Team HiePACS

Overall Objectives
Scientific Foundations
Application Domains
New Results
Contracts and Grants with Industry
Other Grants and Activities

Section: Other Grants and Activities

International initiatives

Associated team PHyLeaS

Participants : Olivier Coulaud, Luc Giraud, Jean Roman.

Grant: INRIA

Dates: 2008-2009

Partners: University of Minnesota, INRIA Sophia-Antipolis Méditerranée, Institute of Computational Mathematics Brunswick, LIMA-IRIT (UMR CNRS 5505)

Overview: New advances in high performance scientific computing require continuing the development of innovative algorithmic and numerical techniques, their efficient implementation on modern massively parallel computing platforms and their integration in application software in order to perform large-scale numerical simulations currently out of reach. The solution of sparse linear systems is a basic kernel which appears in many academic and industrial applications based on partial differential equations (PDEs) modeling physical phenomena of various nature. In most of the applications, this basic kernel is used many times (numerical optimization procedure, implicit time integration scheme, etc.) and often accounts for the larger part of the computing time. In a competitive environment where the numerical simulation tends to replace the experiment, the modeling calls for PDEs of ever increasing complexity. Furthermore, realistic applications involve multiple space and time scales, and non-trivial geometrical features. In this context, a common trend is to discretize the underlying PDE models using arbitrary high-order finite element methods designed on unstructured grids. As a consequence, the resulting algebraic systems are irregularly structured and very large in size. The aim of this project is the design and efficient implementation of parallel hybrid linear system solvers which combine the robustness of direct methods with the implementation flexibility of iterative schemes. These approaches are candidate to get scalable solvers on massively parallel computers.



Logo Inria