Team geostat

Members
Overall Objectives
Scientific Foundations
Application Domains
Software
New Results
Contracts and Grants with Industry
Dissemination
Bibliography

Bibliography

Major publications by the team in recent years

[1]
K. Daoudi.
Iterated function systems and some generalizations: local regularity analysis and multifractal modeling of signals, in: Chapter in the book: Scaling, Fractals and Wavelets, 2009.
[2]
E. Sanchez-Soto, A. Potamianos, K. Daoudi.
Unsupervised Stream-Weights Computation in Classification and Recognition Tasks, in: IEEE Trans. on Audio, Speech and Language Processing, 2009, vol. 17, no 3, p. 436–445.
[3]
A. Turiel, H. Yahia, C. P. Vicente.
Microcanonical multifractal formalism: a geometrical approach to multifractal systems. Part I: singularity analysis, in: Journal of Physics A: Math. Theor, 2008, vol. 41, doi: 10.1088/1751-8113/41/1/015501.

Publications of the year

Articles in International Peer-Reviewed Journal

[4]
O. Pont, A. Turiel, C. J. Pérez-Vicente.
Description, modeling and forecasting of data with optimal wavelets, in: Journal of Economic Interaction and Coordination, June 2009, vol. 4, no 1, p. 39–54
http://www.springerlink.com/content/k6g6954506421856/?p=56c9354469ce46999780568c6bdaa1fc&pi=0.
[5]
O. Pont, A. Turiel, C. Perez-Vicente.
Empirical evidences of a common multifractal signature in economic, biological and physical systems, in: Physica A, February 2009, vol. 388, no 10, p. 2025–2035.
[6]
O. Pont, A. Turiel, C. Perez-Vicente.
On optimal wavelet bases for the realization of microcanonical cascade processes, in: IJWMIP, 2009, Accepted.
[7]
E. Sanchez-Soto, A. Potamianos, K. Daoudi.
Unsupervised Stream-Weights Computation in Classification and Recognition Tasks, in: IEEE Trans. on Audio, Speech and Language Processing, 2009, vol. 17, no 3, p. 436–445.

International Peer-Reviewed Conference/Proceedings

[8]
V. Khanagha, A. Khanagha, M. H. Kahaei.
Selective Tap Training of FIR filters for Blind Source Separation of Convolutive Speech Mixtures, in: Proceedings of 2009 IEEE Symposium on Industrial Electronics and Applications., 2009.
[9]
V. Khanagha, A. Khanagha.
Solving global permutation ambiguity of time domain BSS using speaker specific features of speech signals, in: Proceedings of 2009 IEEE Symposium on Industrial Electronics and Applications., 2009.
[10]
H. Yahia, J. Sudre, C. Pottier, V. Garçon.
Determination of geostrophic vector field on high resolution SST images from the energy cascade, in: 2009 Ocean Surface Topography Science Team Meeting, Seattle, Washington, USA, June, 22-24 2009, vol. 1.

Workshops without Proceedings

[11]
M. Bouali, H. Yahia, A. Turiel, P. Henry.
A Multifractal approach for sun glint in medium resolution satelite imagery, in: ASPRS Conference (American Society for Photogrammetry and Remote Sensing), Baltimore, March, 8-13 2009, vol. 1.
[12]
N. Bouguila, K. Daoudi.
A Statistical Approach for Binary Vectors Modeling and Clustering, in: 13th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), 2009.
[13]
N. Bouguila, K. Daoudi.
Learning concepts from visual scenes using a binary probabilistic model, in: IEEE International Workshop on Multimedia Signal Processing (MMSP), 2009.
[14]
K. Daoudi, J. Louradour.
A comparison between sequence kernels for SVM speaker verification, in: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2009.

Scientific Books (or Scientific Book chapters)

[15]
K. Daoudi.
Iterated function systems and some generalizations: local regularity analysis and multifractal modeling of signals, in: Scaling, Fractals and Wavelets, Wiley & Son Publishers, 2009.

References in notes

[16]
E. Abraham, M. Bowen.
Chaotic stirring by a mesoscale surface-ocean ow, in: Chaos, 2002, vol. 12, no 2, p. 373–381, doi:10.1063/1.1481615.
[17]
L. A. N. Amaral, A. L. Goldberger, P. C. Ivanov, H. E. Stanley.
Scale-independent measures and pathologic cardiac dynamics, in: Physical Review Letters, September 1998, vol. 81, no 11, p. 2388–2391.
[18]
A. Arneodo, F. Argoul, E. Bacry, J. Elezgaray, J. F. Muzy.
Ondelettes, multifractales et turbulence, Diderot Editeur, Paris, France, 1995.
[19]
A. Arneodo, C. Baudet, F. Belin, R. Benzi, B. Castaing, B. Chabaud, R. Chavarria, S. Ciliberto, R. Camussi, F. Chilla, B. Dubrulle, Y. Gagne, B. Hébral, J. Herweijer, M. Marchand, J. Maurer, J. F. Muzy, A. Naert, A. Noullez, J. Peinke, F. Roux, P. Tabeling, W. vandeWater, H. Willaime.
Structure functions in turbulence, in various flow configurations, at Reynolds number between 30 and 5000, using extended self-similarity, in: Europhysics Letters, 1996, vol. 34, no 6, p. 411-416.
[20]
A. Arneodo, J.-F. Muzy, D. Sornette.
`"Direct" causal cascade in the stock market, in: European Physical Journal B, 1998, vol. 2, p. 277–282.
[21]
J. Arrault, A. Arneodo, A. Davis, A. Marshak.
Wavelet-based multifractal analysis of rough surfaces: application to cloud models and satellite data, in: Phys. Rev. Lett., 1997, vol. 79, p. 75-79.
[22]
R. Benzi, L. Biferale, A. Crisanti, G. Paladin, M. Vergassola, A. Vulpiani.
A random process for the construction of multiaffine fields, in: Physica D, 1993, vol. 65, p. 352–358.
[23]
R. Benzi, G. Paladin, G. Parisi, A. Vulpiani.
On the multifractal nature of fully developed turbulence and chaotic systems, in: Journal of Physics A, 1984, vol. 17, p. 3521–3531.
[24]
J. Binney, N. Dowrick, A. Fisher, M. Newman.
The theory of critical phenomena. An introduction to renormalization group, Clarendon Press, Oxford, 1992.
[25]
G. Boffeta, M. Cencini, M. Falcioni, A. Vulpiani.
Predictability: a way to characterize complexity, in: Physics Report, arXiv:nlin/0101029v1, 2002, vol. 356, p. 367–474.
[26]
P. Castiglione, M. Falcioni, A. Lesne, A. Vulpiani.
Physique statistique: Chaos et approches multiéchelles, Belin, Paris, 2008.
[27]
A. Chhabra, C. Meneveau, R. Jensen, K. Sreenivasan.
Direct determination of the f(alpha ) singularity spectrum and its application to fully developed turbulence, in: Phys. Rev A, November 1989, vol. 40, no 9, p. 5284–5294.
[28]
K. Daoudi, J. Lévy-Véhél, Y. Meyer.
Construction of Continuous Functions with Prescribed Local Regularity, in: Constructive Approximation, 1998, vol. 14, no 3, p. 349-386.
[29]
A. Davis, A. Marshak, W. Wiscombe.
Wavelet based multifractal analysis of non-stationary and/or intermittent geophysical signals, in: Wavelets in Geophysics, New York, E. Foufoula-Georgiou, P. Kumar (editors), Academic Press, 1994, p. 249-298.
[30]
B. Dubrulle.
Intermittency in fully developed turbulence: Log-Poisson statistics and generalized scale covariance, in: Physical Review Letters, 1994, vol. 73, p. 959–962.
[31]
O. Faugeras.
Three-Dimensional Computer Vision, The MIT Press, Cambridge, MA, 1993, ISBN-10:0-262-06158-9, ISBN-13:978-0-262-06158-2.
[32]
F. Girosi.
An Equivalence Between Sparse Approximation and Support Vector Machines, in: Neural Computation, 1998, vol. 6, 16 p.
[33]
J. Grazzini.
Analyse multi-échelle et multifractale d'images météorologiques : Application à la détection de zones précipitantes, Université de Marne-la-Vallée, 2003, Ph. D. Thesis.
[34]
J. Grazzini, A. Turiel, H. Yahia.
Entropy Estimation and Multiscale Processing in Meteorological Satellite Images, in: Proc. of ICPR 2002, Los Alamitos, CA, IEEE Computer Society, 2002, vol. 3, p. 764–768.
[35]
J. Grazzini, A. Turiel, H. Yahia.
Analysis and Comparison of Functional Dependencies of Multiscale Textural Features on Monospectral Infrared Images, in: Proc. of IGARSS, 2003, vol. 3, p. 2045-2047.
[36]
V. Gupta, E. Waymire.
A statistical analysis of mesoscale rainfall as a random cascade, in: Journal of Applied Meteorology, 1993, vol. 32, p. 251-267.
[37]
P. Ivanov, L. Amaral, A. Goldberger, S. Havlin, M. Rosenblum, Z. Struzik, H. Stanley.
Multifractality in human heartbeat dynamics, in: Nature, 1999, vol. 399, p. 461–465.
[38]
L. P. Kadanoff.
Scaling, Universality, and Operator Algebras, in: Phase Transitions and Critical Phenomena, Academic Press, New York, 1976, vol. 5A, C. Domb and M.S. Green ed..
[39]
A. N. Kolmogorov.
Dissipation of energy in a locally isotropic turbulence, in: Dokl. Akad. Nauk. SSSR, 1941, vol. 32, 141 p.
[40]
M. Laguës, A. Lesne.
Invariances d'échelle (des changements d'état à la turbulence), Collection "Echelles", Belin, Paris, 2003, ISBN 2-7011-3175-8.
[41]
A. Lesne.
Méthodes de renormalisation. Phénomènes critiques, chaos, structures fractales, Eyrolles, Paris, 1996, ISBN 2-212-05830-6.
[42]
T. Lindenberg.
Scale-space theory in computer vision, Kluwer academic publishers, New-York, 1997.
[43]
J. Louradour, K. Daoudi, F. Bach.
Feature space Mahalanobis sequence kernels: application to SVM speaker verification, in: IEEE Transactions on Speech and Audio Processing, 2007, vol. 15, no 8.
[44]
B. B. Mandelbrot, A. Fisher, L. Calvet.
A Multifractal Model of Asset Returns, in: Cowles Foundation Discussion Paper No. 1164, 1997,   p.
[45]
W. Munk.
Oceanography before, and after, the advent of satellites, in: Satellites, Oceanography, and Society, D. Halpern (editor), 2000, p. 1-4.
[46]
J. F. Muzy, E. Bacry, A. Arneodo.
Wavelets and multifractal formalism for singular signals: Application to turbulence data, in: Physical Review Letters, 1991, vol. 67, p. 3515–3518.
[47]
J. F. Muzy, J. Delour, E. Bacry.
Modelling fluctuations of financial time series: from cascade process to stochastic volatility model., in: Euro. Phys. Journal B, 2000, vol. 17, p. 537–548.
[48]
A. Nevado, A. Turiel, N. Parga.
Scene dependence of the non-gaussian scaling properties of natural images, in: Network, 2000, vol. 11, p. 131-152.
[49]
E. A. Novikov.
Infinitely divisible distributions in turbulence, in: Physical Reviev E, 1994, vol. 50, R3303 p.
[50]
N. Parga, J. M. Delgado, A. Turiel.
Predicting Receptive Fields in V1 from Natural Scene Properties, in: Society for Neuroscience Abstracts, 2003, vol. 29, p. 8-12.
[51]
G. Parisi, U. Frisch.
On the singularity structure of fully developed turbulence, in: Turbulence and Predictability in Geophysical Fluid Dynamics. Proc. Intl. School of Physics E. Fermi, Amsterdam, M. Ghil, R. Benzi, G. Parisi (editors), North Holland, 1985, p. 84-87.
[52]
H. V. D. Parunak, S. Brueckner, R. Savit.
Universality in multi-agent systems, in: Procedings of the third International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS'04, NY, USA, November 2004, p. 930-937.
[53]
O. Pont.
A microcanonical cascade formalism for multifractal systems and its application to data inference and forecasting, University of Barcelona, 2009, Ph. D. Thesis.
[54]
C. Pottier, A. Turiel, V. Garçon.
Inferring missing ocean color data using turbulent cascading, in: Remote Sensing of Environment, 2008, In press..
[55]
R. H. Riedi, M. S. Crouse, V. J. Ribeiro, R. G. Baraniuk.
A multifractal wavelet model with application to network traffic, in: IEEE Special Issue on Information Theory, April 1999, vol. 45, p. 992–1018.
[56]
S. G. Roux, A. Arneodo, N. Decoster.
A wavelet-based method for multifractal image analysis. III. Applications to high-resolution satellite images of cloud structure, in: Eur. Phys. J. B, 2000, vol. 15, p. 765–786.
[57]
D. Schertzer, S. Lovejoy, F. Schmitt, I. Tchiguirinskaia, D. Marsan.
Multifractal cascade dynamics and turbulent intermittency, in: Fractals, 1997, vol. 3, p. 427-471.
[58]
D. Schertzer, S. Lovejoy.
The dimension and intermittency of atmospheric dynamics, in: Turbulent Shear Flow 4, B. Launder (editor), Elsevier Science, 1985, p. 7–33.
[59]
D. Schertzer, S. Lovejoy.
Physical modeling and Analysis of Rain and Clouds by Anisotropic Scaling of Multiplicative Processes, in: Journal of Geophysical Research, 1987, vol. D8, no 8, p. 9693-9714.
[60]
D. Schertzer, S. Lovejoy.
Nonlinear geodynamical variability: multiple singularities, universality and observables, Kluwer, New-York, 1991.
[61]
D. Schertzer, S. Lovejoy.
Universal multifractals do exist!: comments on " A statistical analysis of mesoscale rainfall as a random cascade", in: Journal of Applied Meteorology, 1997, vol. 36, p. 1296-1303.
[62]
K. Schneider, M. Farge.
Analysing Computing turbulent flows using wavelets, in: Wavelet Analysis as a Tool for Computational and Harmonic Analysis, L. Debnath (editor), Birkhaüser, 2000.
[63]
Z. S. She, E. Leveque.
Universal scaling laws in fully developed turbulence, in: Physical Review Letters, 1994, vol. 72, p. 336–339.
[64]
Z. S. She, E. C. Waymire.
Quantized energy cascade and log-poisson statistics in fully developed turbulence, in: Physical Review Letters, 1995, vol. 74, p. 262-265.
[65]
K. Sreenivasan.
Fractals and multifractals in fluid turbulence, in: Ann. Rev. Fluid. Mech., 1991, vol. 23, p. 539–600.
[66]
H. Stanley.
Introduction to phase transitions and critical phenomena, Oxford Science publications, Oxford, UK, 1987.
[67]
J. Sudre, H. Yahia, V. Garçon, C. Provost.
Multisensor datafusion through multiscale model: a method for high resolution oriented geostrophy, in: GODAE Symposium proceedings "The revolution in global ocean forecasting", Nice, France, November 2008.
[68]
A. Turiel, A. del Pozo.
Reconstructing images from their most singular fractal manifold, in: IEEE Trans. on Im. Proc., 2002, vol. 11, p. 345–350.
[69]
A. Turiel, J. Grazzini, H. Yahia.
Multiscale techniques for the detection of precipitation using thermal IR satellite images, in: IEEE Geoscience and Remote Sensing Letters, October 2005, vol. 2, no 4, p. 447-450, doi:10.1109/LGRS.2005.852712.
[70]
A. Turiel, J. Isern-Fontanet, E. García-Ladona, J. Font.
Multifractal method for the instantaneous evaluation of the stream-function in geophysical flows, in: Physical Review Letters, September 2005, vol. 95, no 10, 104502 p, doi:10.1103/PhysRevLett.95.104502.
[71]
A. Turiel, G. Mato, N. Parga, J. P. Nadal.
Self-similarity properties of natural images, in: Proc. of NIPS'97, MIT Press, 1997, vol. 10, p. 836–842.
[72]
A. Turiel, G. Mato, N. Parga, J. P. Nadal.
The self-similarity properties of natural images resemble those of turbulent flows, in: Physical Review Letters, 1998, vol. 80, p. 1098–1101.
[73]
A. Turiel, N. Parga, D. Ruderman, T. Cronin.
Multiscaling and information content of natural color images, in: Physical Review E, 2000, vol. 62, p. 1138-1148.
[74]
A. Turiel, N. Parga.
The multi-fractal structure of contrast changes in natural images: from sharp edges to textures, in: Neural Computation, 2000, vol. 12, p. 763-793.
[75]
A. Turiel, C. Perez-Vicente.
Multifractal geometry in stock market time series, in: Physica A, May 2003, vol. 322, p. 629–649.
[76]
A. Turiel, C. Perez-Vicente.
Multifractal measures: definition, description, synthesis and analysis. A detailed study, in: Proceedings of the "Journées d'étude sur les méthodes pour les signaux complexes en traitement d'image", Rocquencourt, J.-P. Nadal, A. Turiel, H. Yahia (editors), INRIA, 2004, p. 41–57.
[77]
A. Turiel, C. Perez-Vicente.
Role of multifractal sources in the analysis of stock market time series, in: Physica A, September 2005, vol. 355, p. 475–496.
[78]
A. Turiel, C. P. Vicente, J. Grazzini.
Numerical methods for the estimation of multifractal singularity spectra on sampled data: a comparative study, in: Journal of Computational Physics, 2006, vol. 216, no 1, p. 362–390.
[79]
D. Uzunov.
Introduction to the theory of critical phenomena, World Scientific, New York, 1992.
[80]
G. Wahba.
Support vector machines, reproducing kernel hilbert spaces, and randomized gacv, MIT Press Cambridge, MA, USA, 1998
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.2114.
[81]
A. S. Willsky.
Multiresolution Markov models for signal and image processing, in: Proceeings of the IEEE, 2002, vol. 9, no 3, p. 1396–1458.
[82]
H. Yahia, A. Turiel, N. Chrysoulakis, J. Grazzini, P. Prastacos, I. Herlin.
Application of the Microcanonical Multifractal Formalism to the detection of fire plumes in NOAA-AVHRR data, in: International Journal of Remote Sensing, 2008, vol. 29, no 14, p. 4189-4205, doi: 10.1080/01431160701840174.

previous
next