Team CORTEX

Members
Overall Objectives
Scientific Foundations
Application Domains
Software
New Results
Other Grants and Activities
Dissemination
Bibliography

Section: Scientific Foundations

Computational neuroscience

With regards to the progress that has been made in anatomy, neurobiology, physiology, imaging, and behavioral studies, computational neuroscience offers a unique interdisciplinary cooperation between experimental and clinical neuroscientists, physicists, mathematicians and computer scientists. It combines experiments with data analysis and functional models with computer simulation on the basis of strong theoretical concepts and aims at understanding mechanisms that underlie neural processes such as perception, action, learning, memory or cognition.

Today, computational models are able to offer new approaches of the complex relations between the structural and the functional level of the brain thanks to models built at several levels of description. In very precise models, a neuron can be divided in several compartments and its dynamics can be described by a system of differential equations. The spiking neuron approach (cf.  §  3.2 ) proposes to define simpler models concentrated on the prediction of the most important events for neurons, the emission of spikes. This allows to compute networks of neurons and to study the neural code with event-driven computations.

Larger neuronal systems can be considered when the unit of computation is defined at the level of the population of neurons and when rate coding is supposed to bring enough information. Studying Dynamic Neural Fields (cf.  §  3.3 ) consequently lays emphasis on information flows between populations of neurons (feed-forward, feed-back, lateral connectivity) and is well adapted to defining high-level behavioral capabilities related for example to visuomotor coordination.

Furthermore, these computational models and methods have strong implications for other sciences (e.g. computer science, cognitive science, neuroscience) and applications (e.g. robots, cognitive prosthesis) as well (cf.  §  4.1 ). In computer science, they promote original modes of distributed computation (cf.  §  3.5 ); in cognitive science, they have to be related to current theories of cognition (cf.  §  3.6 ); in neuroscience, their predictions have to be related to observed behaviors and measured brain signals (cf.  §  3.4 ).


previous
next

Logo Inria