Bibliography
Major publications by the team in recent years
- [1]
- N. Bérend, J. Bonnans, J. Laurent-Varin, M. Haddou, C. Talbot.
An Interior-Point Approach to Trajectory Optimization, in: J. Guidance, Control and Dynamics, 2007, vol. 30, no 5, p. 1228-1238. - [2]
- O. Bokanowski, B. Bruder, S. Maroso, H. Zidani.
Numerical approximation for a superreplication problem under gamma constraints, in: SIAM. Num. Analysis., 2009, vol. 47(3), p. 2289–2320. - [3]
- O. Bokanowski, N. Megdich, H. Zidani.
Convergence of a non-monotone scheme for Hamilton-Jacobi-Bellman equations with discontinuous initial data, in: Numerische Mathematik - DOI: 10.1007/s00211-009-0271-1, 2009. - [4]
- J. Bonnans, J. C. Gilbert, C. Lemaréchal, C. Sagastizábal.
Numerical Optimization: theoretical and numerical aspects, Universitext, Springer-Verlag, Berlin, 2006, second edition. - [5]
- J. Bonnans, S. Maroso, H. Zidani.
Error estimates for a stochastic impulse control problem, in: Appl. Math. and Optim., 2007, vol. 55, no 3, p. 327–357. - [6]
- J. Bonnans, A. Shapiro.
Perturbation analysis of optimization problems, Springer-Verlag, New York, 2000. - [7]
- J. Bonnans, H. Zidani.
Consistency of generalized finite difference schemes for the stochastic HJB equation, in: SIAM J. Numerical Analysis, 2003, vol. 41, p. 1008-1021. - [8]
- B. Bonnard, L. Faubourg, E. Trélat.
Mécanique céleste et contrôle des véhicules spatiaux, Springer-Verlag, 2006. - [9]
- J. Gergaud, P. Martinon.
Using switching detection and variational equations for the shooting method, in: Optimal Control Applications and Methods, 2007, vol. 28, no 2, p. 95–116. - [10]
- P. Martinon, J. Bonnans, E. Trélat.
Singular arcs in the generalized Goddard's Problem, in: J. Optimization Theory Applications, 2008, vol. 139, no 2, p. 439-4361.
Publications of the year
Articles in International Peer-Reviewed Journal
- [11]
- J. André, J. Bonnans.
Optimal structure of gas transmission trunklines, in: Optimization and Engineering, 2010, Rapport de Recherche INRIA RR 6791, Jan 2009. Accepted Oct. 2009. - [12]
- M. André, J. Bonnans, L. Cornibert.
Planning reinforcement on gas transportation networks with optimization methods, in: European J. Operational Research, 2009, vol. 197, no 3, p. 1019-1027. - [13]
- O. Bokanowski, A. Briani, H. Zidani.
Minumum time control problems for non autonomous differential equations, in: Systems & Control Letters, 2009, vol. 58, p. 742–746. - [14]
- O. Bokanowski, B. Bruder, S. Maroso, H. Zidani.
Numerical approximation for a superreplication problem under gamma constraints, in: SIAM. Num. Analysis., 2009, vol. 47(3), p. 2289–2320. - [15]
- O. Bokanowski, E. Cristiani, H. Zidani.
An efficient data structure and accurate scheme to solve front propagation problems, in: Journal of Scientific Computing, 2009. - [16]
- O. Bokanowski, N. Forcadel, H. Zidani.
L1-error estimates for numerical approximations of Hamilton-Jacobi-Bellman equations in dimension 1, in: Mathematics of Computation, 2009. - [17]
- O. Bokanowski, S. Maroso, H. Zidani.
Some convergence results for Howard's algorithm, in: SIAM. J. Num. Analysis., 2009, vol. 47(4), p. 3001–3026. - [18]
- O. Bokanowski, N. Megdich, H. Zidani.
Convergence of a non-monotone scheme for Hamilton-Jacobi-Bellman equations with discontinuous initial data, in: Numerische Mathematik, 2009. - [19]
- J. Bonnans, A. Hermant.
No Gap Second order Optimality Conditions for Optimal Control Problems with a single State Constraint and Control, in: Mathematical Programming, Series B, 2009, vol. 117, p. 21-50. - [20]
- J. Bonnans, A. Hermant.
Revisiting the Analysis of Optimal Control Problems with Several State Constraints, in: Control and Cybernetics, 2009, vol. 34, no 4. - [21]
- J. Bonnans, A. Hermant.
Second-order Analysis for Optimal Control Problems with Pure State Constraints and Mixed Control-State Constraints, in: Annales de l'I.H.P. - Nonlinear Analysis, 2009, vol. 26, no 2, p. 561-598. - [22]
- J. Bonnans, M. Lebelle.
Explicit polyhedral approximation of the Euclidean ball, in: RAIRO-RO, 2010, vol. 44, To appear. - [23]
- J. Bonnans, N. Osmolovskiĭ.
Second-order analysis of optimal control problems with control and initial-final state constraints, in: J. Convex Analysis, 2010, vol. 17. - [24]
- A. Briani, R. Monneau.
Time-homogenization of a first order system arising in the modelling of the dynamics of dislocations densities, in: Comptes Rendus de l'Académie des sciences Paris Ser. I, 2009, vol. 347, p. 231–236. - [25]
- P. Martinon, J. Bonnans, E. Trélat.
Numerical study of optimal trajectories with singular arcs for space launcher problems, in: AIAA J. of Guidance, Control and Dynamics, 2009, vol. 32, no 1, p. 51-55. - [26]
- M. Quincampoix, O. Serea.
The problem of optimal control with reflection s tudied through a linear optimization problem stated on occupational measures, in: Nonlinear Analysis TMA, 2010, Accepted under minor revision. - [27]
- O. Serea.
Reflected differential games, in: SIAM J. Control Optim., 2009, vol. 48, no 4, p. 2516-2532.
Articles in Non Peer-Reviewed Journal
- [28]
- J. Bonnans, D. Tiba.
Control problems with mixed constraints and application to an optimal investment problem, in: Mathematical Reports (Romanian Academy of Sciences), 2009, vol. 11, no 4, Dedicated to Dr. Constantin Varsan on the occasion of his 70th Birthday.
Internal Reports
- [29]
- N. Alibaud, A. Briani, R. Monneau.
Diffusion as a singular homogenization of the Frenkel-Kontorova model, 2009, submitted, hal-00372407. - [30]
- F. Alvarez, J. Bolte, J. Bonnans, F. Silva.
Asymptotic expansions for interior penalty solutions of control constrained linear-quadratic problems, INRIA, 2009, no RR 6863, Technical report. - [31]
- O. Bokanowski, N. Forcadel, H. Zidani.
Reachability and minimal times for state constrained nonlinear problems without any controllability assumption, 2009, submitted, hal-00395589. - [32]
- J. Bonnans, Z. Cen, T. Christel.
Stochastic programming using optimal quantization, INRIA, 2009, To appear. - [33]
- J. Bonnans, F. Silva.
Asymptotic expansions for the solution of a penalized control constrained semilinear elliptic problem, INRIA, December 2009, no 7126, Technical report. - [34]
- A. Briani, H. Zidani.
Characterisation of the value function of final state constrained control problems with BV trajectories, 2009, submitted. - [35]
- E. Cristiani, P. Martinon.
Initialization of the shooting method via the Hamilton-Jacobi-Bellman approach, 2010, submitted, Rapport de Recherche INRIA RR 7139, hal inria-00439543. - [36]
- J. Krawczyk, O. Serea.
A viability theory approach to a two-stage optimal control problem, 2009
http://ideas.repec.org/p/pra/mprapa/10103.html, Technical report.
References in notes
- [37]
- A. Ruszczyński, A. Shapiro (editors)
Stochastic Programming, Handbook in Operations Research and Management, Elsevier, Amsterdam, 2003, vol. 10. - [38]
- R. Abgrall.
Numerical discretization of boundary conditions for first order Hamilton-Jacobi equations, in: SIAM J. Numerical Analysis, 2003, vol. 41, no 6, p. 2233–2261. - [39]
- R. Abgrall, S. Augoula.
High order numerical discretization for Hamilton-Jacobi equations on triangular meshes, in: J. Scientific Computing, 2000, vol. 15, no 2, p. 197–229. - [40]
- E. Allgower, K. Georg.
Numerical Continuation Methods, Springer-Verlag, Berlin, 1990. - [41]
- P. Artzner, F. Delbaen, J. Eber, D. Heath.
Coherent measures of risk, in: Mathematical Finance, 1999, vol. 9, no 3, p. 203–228. - [42]
- J. Aubin, H. Frankowska.
Set-valued analysis, Birkhäuser, Boston, 1990. - [43]
- V. Bally, G. Pagès, J. Printems.
A quantization tree method for pricing and hedging multidimensional American options, in: Math. Finance, 2005, vol. 15, no 1, p. 119–168. - [44]
- V. Barbu.
Optimal control of variational inequalities, Research Notes in Mathematics, Pitman, Boston, 1984, vol. 100. - [45]
- M. Bardi, I. Capuzzo-Dolcetta.
Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Systems and Control: Foundations and Applications, Birkhäuser, Boston, 1997. - [46]
- G. Barles.
Solutions de viscosité des équations de Hamilton-Jacobi, Mathématiques et Applications, Springer, Paris, 1994, vol. 17. - [47]
- G. Barles, E. Jakobsen.
Error bounds for monotone approximation schemes for Hamilton-Jacobi-Bellman equations, in: SIAM J. Numerical Analysis, 2005, vol. 43, no 2, p. 540–558 (electronic). - [48]
- A. Ben-Tal, B. Golany, A. Nemirovski, J. Vial.
Supplier-Retailer Flexible Commitments Contracts: A Robust Optimization Approach, in: Manufacturing and Service Operations Management, 2005, vol. 7, no 3, p. 248-273. - [49]
- A. Ben-Tal, A. Nemirovski.
Robust convex optimization, in: Mathematics of Operations Research, 1998, vol. 23, p. 769–805. - [50]
- A. Ben-Tal, M. Teboulle.
An old-new concept of convex risk measures: the optimized certainty equivalent, in: Mathematical Finance, 2007, vol. 17, no 3, p. 449–476. - [51]
- N. Bérend, J. Bonnans, J. Laurent-Varin, M. Haddou, C. Talbot.
An Interior-Point Approach to Trajectory Optimization, in: AIAA J. Guidance, Control and Dynamics, 2005, vol. 30, no 5, p. 1228- -1238. - [52]
- N. Bérend, J. Bonnans, J. Laurent-Varin, M. Haddou, C. Talbot.
Fast Linear Algebra for Multiarc Trajectory Optimization, in: Large scale nonlinear optimization, G. D. Pillo, M. Roma (editors), Nonconvex Optimization and Its Applications, Springer, 2006, vol. 83, p. 1–14. - [53]
- M. Bergounioux, H. Zidani.
A fully Discrete Approximation for a Control Problem of Parabolic Variational Inequalities, in: SIAM J. Numerical Analysis, 2002, vol. 39, no 6, p. 2014-2033. - [54]
- A. Bermúdez, C. Saguez.
Optimal control of a Signorini problem, in: SIAM Journal on Control and Optimization, 1987, vol. 25, p. 576–582. - [55]
- D. Bertsekas.
Constrained optimization and Lagrange multipliers methods, Academic Press, New York, 1982. - [56]
- D. Bertsekas.
Dynamic programming and optimal control (2 volumes), Athena Scientific, Belmont, Massachusetts, 1995. - [57]
- D. Bertsekas, J. Tsitsiklis.
Neuro-dynamic programming (2nd edition), Athena Scientific, Belmont, Mass., 1996. - [58]
- J. Betts.
Practical methods for optimal control using nonlinear programming, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001. - [59]
- J. Betts.
Survey of Numerical Methods for Trajectory Optimization, in: AIAA J. of Guidance, Control and Dynamics, 1998, vol. 21, p. 193-207. - [60]
- G. Blanchon, J. Dodu, J. Bonnans.
Optimisation des réseaux électriques de grande taille, in: Analysis and optimization of systems, A. Bensoussan, J. Lions (editors), Lecture Notes in Information and Control Sciences, Springer-Verlag, Berlin, 1990, vol. 144, p. 423-431. - [61]
- G. Bliss.
Lectures on the Calculus of Variations, University of Chicago Press, Chicago, Illinois, 1946. - [62]
- H. Bock.
Numerical treatment of inverse problems in chemical reaction kinetics, in: Modelling of Chemical Reaction Systems, Heidelberg, Springer Series in Chemical Physics, Springer, 1981, vol. 18, p. 102–125. - [63]
- O. Bokanowski, B. Bruder, S. Maroso, H. Zidani.
Numerical approximation for a superreplication problem under gamma constraints, in: SIAM. Num. Analysis., 2009, vol. 47(3), p. 2289–2320. - [64]
- O. Bokanowski, N. Megdich, H. Zidani.
An adaptative antidissipative method for optimal control problems, in: ARIMA, 2006, vol. 5, p. 256–271. - [65]
- O. Bokanowski, H. Zidani.
Anti-diffusive schemes for linear advection and application to Hamilton-Jacobi-Bellman equations, in: J. Sci. Computing, 2007, vol. 30, no 1, p. 1–33. - [66]
- O. Bokanowski, H. Zidani.
Anti-dissipative schemes for advection and application to Hamilton-Jacobi-Bellman equations, in: J. Sci. Computing, 2007, vol. 30, no 1, p. 1–33. - [67]
- J. Bonnans.
Optimisation Continue, Dunod, Paris, 2006. - [68]
- J. Bonnans.
Second order analysis for control constrained optimal control problems of semilinear elliptic systems, in: Journal of Applied Mathematics & Optimization, 1998, vol. 38, p. 303-325. - [69]
- J. Bonnans, E. Casas.
An extension of Pontryagin's principle for state-constrained optimal control of semilinear elliptic equations and variational inequalities, in: SIAM J. Control Optimization, 1995, vol. 33, no 1, p. 274-298. - [70]
- J. Bonnans, P. Chartier, H. Zidani.
Discrete approximations of the Hamilton-Jacobi equation for an optimal control problem of a differential-algebraic system, in: Control and Cybernetics, 2003, vol. 32. - [71]
- J. Bonnans, R. B. Fourati, H. Smaoui.
The obstacle problem for water tanks, in: Journal de Mathématiques Pures et Appliquées, 2003, vol. 82, no 11, p. 1527–1553. - [72]
- J. Bonnans, J. C. Gilbert, C. Lemaréchal, C. Sagastizábal.
Numerical Optimization: theoretical and numerical aspects, Universitext, Springer-Verlag, Berlin, 2006, second edition. - [73]
- J. Bonnans, T. Guilbaud, A. Ketfi-Cherif, C. Sagastizábal, D. von Wissel, H. Zidani.
Parametric optimization of hybrid car engines, in: Optimization and Engineering, 2004, vol. 5-4, p. 395-415. - [74]
- J. Bonnans, A. Hermant.
Well-Posedness of the Shooting Algorithm for State Constrained Optimal Control Problems with a Single Constraint and Control, in: SIAM J. Control Optimization, 2007, vol. 46, no 4, p. 1398–1430. - [75]
- J. Bonnans, A. Hermant.
Stability and Sensitivity Analysis for Optimal Control Problems with a First-order State Constraint, in: ESAIM:COCV, 2008, vol. 14, no 4, p. 825–863. - [76]
- J. Bonnans, A. Hermant.
Second-order Analysis for Optimal Control Problems with Pure State Constraints and Mixed Control-State Constraints, 2009, vol. 26, no 2, p. 561-598. - [77]
- J. Bonnans, G. Launay.
Sequential quadratic programming with penalization of the displacement, in: SIAM J. Optimization, 1995, vol. 5, p. 792-812. - [78]
- J. Bonnans, G. Launay.
Large Scale Direct Optimal Control Applied to a Re-Entry Problem, in: AIAA J. of Guidance, Control and Dynamics, 1998, vol. 21, p. 996-1000. - [79]
- J. Bonnans, J. Laurent-Varin.
Computation of order conditions for symplectic partitioned Runge-Kutta schemes with application to optimal control, in: Numerische Mathematik, 2006, vol. 103, no 1, p. 1–10. - [80]
- J. Bonnans, S. Maroso, H. Zidani.
Error estimates for stochastic differential games: the adverse stopping case, in: IMA, J. Numerical Analysis, 2006, vol. 26, p. 188-212. - [81]
- J. Bonnans, S. Maroso, H. Zidani.
Error estimates for a stochastic impulse control problem, in: Appl. Math. and Optim., 2007, vol. 55, no 3, p. 327–357. - [82]
- J. Bonnans, E. Ottenwaelter, H. Zidani.
Numerical schemes for the two dimensional second-order HJB equation, in: ESAIM: M2AN, 2004, vol. 38, p. 723-735. - [83]
- J. Bonnans, A. Shapiro.
Perturbation analysis of optimization problems, Springer-Verlag, New York, 2000. - [84]
- J. Bonnans, D. Tiba.
Pontryagin's principle in the control of semilinear elliptic variational inequalities, in: Applied Mathematics and Optimization, 1991, vol. 23, no 3, p. 299-312. - [85]
- J. Bonnans, H. Zidani.
Consistency of generalized finite difference schemes for the stochastic HJB equation, in: SIAM J. Numerical Analysis, 2003, vol. 41, p. 1008-1021. - [86]
- B. Bonnard, L. Faubourg, G. Launay, E. Trélat.
Optimal control with state constraints and the space shuttle re-entry problem, in: Journal of Dynamical and Control Systems, 2003, vol. 9, no 2, p. 155–199. - [87]
- B. Bonnard, L. Faubourg, E. Trélat.
Optimal control of the atmospheric arc of a space shuttle and numerical simulations by multiple-shooting techniques, in: Math. Models Methods Applied Sciences, 2005, vol. 15, no 1, p. 109–140. - [88]
- B. Bonnard, L. Faubourg, E. Trélat.
Mécanique céleste et contrôle des véhicules spatiaux, Mathématiques et Applications, Springer-Verlag, 2006, vol. 51. - [89]
- M. Broadie, P. Glasserman, Z. Ha.
Pricing American options by simulation using a stochastic mesh with optimized weights, in: Probabilistic constrained optimization, Dordrecht, Nonconvex Optim. Appl., Kluwer Acad. Publ., 2000, vol. 49, p. 26–44. - [90]
- B. Brogliato, M. Mabrouk, A. Z. Rio.
On the controllability of linear juggling mechanical systems, in: Systems Control Lett., 2006, vol. 55, no 4, p. 350–367. - [91]
- A. E. Bryson, Y.-C. Ho.
Applied optimal control, Hemisphere Publishing, New-York, 1975. - [92]
- F. Clarke.
A new approach to Lagrange multipliers, in: Mathematics of Operations Research, 1976, vol. 2, p. 165-174. - [93]
- J.-M. Coron, E. Trélat.
Global steady-state controllability of 1-D semilinear heat equations, in: SIAM J. Control Optimization, 2004, vol. 43, p. 549–569. - [94]
- J.-M. Coron, E. Trélat.
Global steady-state stabilization and controllability of 1-D semilinear wave equations, in: Commun. Contemp. Mathematics, 2006, vol. 8, no 4, p. 535–567. - [95]
- M. Crandall, L. Evans, P. Lions.
Some properties of viscosity solutions of Hamilton-Jacobi equations, in: Trans. Amer. Math. Soc, 1984, vol. 282, p. 487-502. - [96]
- M. Crandall, H. Ishii, P. Lions.
User's guide to viscosity solutions of second order partial differential equations, in: Bull. American Mathematical Society (New Series), 1992, vol. 27, p. 1–67. - [97]
- M. Crandall, P. Lions.
Viscosity solutions of Hamilton Jacobi equations, in: Bull. American Mathematical Society, 1983, vol. 277, p. 1–42. - [98]
- M. Crandall, P. Lions.
Two approximations of solutions of Hamilton-Jacobi equations, in: Mathematics of Computation, 1984, vol. 43, p. 1–19. - [99]
- G. Dantzig, P. Wolfe.
Decomposition principle for linear programs, in: Operations Research, 1959, vol. 8, p. 101-111. - [100]
- B. Després, F. Lagoutière.
Contact discontinuity capturing schemes for linear advection and compressible gas dynamics, in: J. Sci. Comput., 2001, vol. 16, p. 479-524. - [101]
- B. Després, F. Lagoutière.
A non-linear anti-diffusive scheme for the linear advection equation, in: C. R. Acad. Sci. Paris, Série I, Analyse numérique, 1999, vol. 328, p. 939-944. - [102]
- P. Deuflhard.
Newton Methods for Nonlinear Problems, Springer-Verlag, Berlin, 2004. - [103]
- M. Diehl, J. Björnberg.
Robust dynamic programming for min-max model predictive control of constrained uncertain systems, in: IEEE Transactions on Automatic Control, 2004, vol. 49, no 12, p. 2253–2257. - [104]
- M. Diehl, H. Bock, E. Kostina.
An approximation technique for robust nonlinear optimization, in: Mathematical Programming, 2006, vol. 107, p. 213 - 230. - [105]
- L. Dixon, M. Bartholomew-Biggs.
Adjoint-control transformations for solving pratical optimal control problems, in: Optimal Control, Applications and Methods, 1981, vol. 2, p. 365-381. - [106]
- A. Dontchev, W. Hager, V. Veliov.
Second-order Runge-Kutta approximations in control constrained optimal control, in: SIAM Journal on Numerical Analysis, 2000, vol. 38, p. 202–226 (electronic). - [107]
- J. Dupačová, N. Gröwe-Kuska, W. Römisch.
Scenario reduction in stochastic programming. An approach using probability metrics, in: Math. Program., 2003, vol. 95, no 3, Ser. A, p. 493–511. - [108]
- G. Duvaut, J. Lions.
Les inéquations en mécanique et en physique, Dunod, Paris, 1972. - [109]
- I. Ekeland.
Nonconvex minimization problems, in: Bulletin of the American Mathematical Society, 1979, vol. 1(New series), p. 443-474. - [110]
- M. Falcone, R. Ferretti.
Semi-Lagrangian schemes for Hamilton-Jacobi equations, discrete representation formulae and Godunov methods, in: Journal of Computational Physics, 2002, vol. 175, p. 559–575. - [111]
- M. Falcone, R. Ferretti.
Convergence analysis for a class of high-order semi-Lagrangian advection schemes, in: SIAM J. Numer. Anal., 1998, vol. 35, no 3, p. 909–940 (electronic). - [112]
- J. Gergaud, P. Martinon.
Using switching detection and variational equations for the shooting method, in: Optimal Control Applications and Methods, 2007, vol. 28, no 2, p. 95–116. - [113]
- B. Goh.
Necessary Conditions for Singular extremals involving multiple control variables, in: J. SIAM Control, 1966, vol. 4, p. 716–731. - [114]
- W. Hager.
Runge-Kutta methods in optimal control and the transformed adjoint system, in: Numerische Mathematik, 2000, vol. 87, no 2, p. 247–282. - [115]
- E. Hairer, C. Lubich, G. Wanner.
Geometric numerical integration, Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 2002, vol. 31. - [116]
- E. Hairer, S. P. Nørsett, G. Wanner.
Solving ordinary differential equations. I, Springer Series in Computational Mathematics, Second, Springer-Verlag, Berlin, 1993, vol. 8. - [117]
- E. Hairer, G. Wanner.
Solving ordinary differential equations. II, Springer Series in Computational Mathematics, Second, Springer-Verlag, Berlin, 1996, vol. 14. - [118]
- S. Han.
Superlinearly convergent variable metric algorithms for general nonlinear programming problems, in: Math. Programming, 1976, vol. 11, p. 263–282. - [119]
- P. Harker, J.-S. Pang.
Finite dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications, in: Mathematical Programming, series B, 1990, vol. 48, p. 161-220. - [120]
- E. Harten.
ENO schemes with subcell resolution, in: J. Computational Physics, 1989, vol. 83, p. 148–184. - [121]
- R. Hartl, S. Sethi, R. Vickson.
A survey of the maximum principles for optimal control problems with state constraints, in: SIAM Review, 1995, vol. 37, p. 181–218. - [122]
- A. Hermant.
Optimal Control of the Atmospheric Reentry of a Space Shuttle by an Homotopy Method, INRIA, 2008, no RR 6627, Rapport de Recherche. - [123]
- M. Hestenes.
Multiplier and gradient methods, in: Journal of Optimization Theory and Applications, 1969, vol. 4, p. 303-320. - [124]
- C. Hu, C. Shu.
A discontinuous Galerkin finite element method for Hamilton-Jacobi equations, in: SIAM J. on Scientific Computing, 1999, vol. 21, no 2, p. 666–690 (electronic). - [125]
- C. Hu, C. Shu.
A discontinuous Galerkin finite element method for Hamilton-Jacobi equations, in: SIAM J. on Scientific Computing, 1999, vol. 21, no 2, p. 666–690 (electronic). - [126]
- A. Ioffe, V. Tihomirov.
Theory of Extremal Problems, North-Holland Publishing Company, Amsterdam, 1979, Russian Edition: Nauka, Moscow, 1974. - [127]
- T. Jockenhövel, L. Biegler, A. Wächter.
Dynamic Optimization of the Tennessee Eastman Process Using the OptControlCentre, in: Computers and Chemical Engineering, 2003, vol. 27, p. 1513–1531. - [128]
- P. Kall, S. Wallace.
Stochastic Programming, Wiley, Chichester, 1994. - [129]
- N. Karmarkar.
A new polynomial time algorithm for linear programming, in: Combinatorica, 1984, vol. 4, p. 373-395. - [130]
- D. Kinderlehrer, G. Stampacchia.
An introduction to variational inequalities and their applications, Academic Press, New York, 1980. - [131]
- D. Kraft.
Finite-difference gradients versus error-quadrature gradients in the solution of parameterized optimal control problems, in: Optimal Control, Appl. and Methods, 1981, vol. 2, p. 191-199. - [132]
- A. J. Krener, H. Schättler.
The structure of small-time reachable sets in low dimensions, in: SIAM J. Control Optim., 1989, vol. 27, no 1, p. 120–147. - [133]
- N. Krylov.
On the rate of convergence of finite-difference approximations for Bellman's equations with variable coefficients, in: Probability Theory and Related Fields, 2000, vol. 117, p. 1–16. - [134]
- H. Kushner, P. Dupuis.
Numerical methods for stochastic control problems in continuous time, Applications of mathematics, Springer, New York, 2001, vol. 24, Second edition. - [135]
- J.-L. Lagrange.
Mécanique analytique, Paris, 1788, reprinted by J. Gabay, 1989. - [136]
- J. Laurent-Varin, N. Bérend, J. Bonnans, C. Talbot.
An efficient optimization method dealing with global RLV (ascent and descent) trajectories, in: Proc. 56th International Astronautical Congress, Fukuoka October 17-21, 2005. - [137]
- E. Lee, L. Markus.
Foundations of optimal control theory, John Wiley, New York, 1967. - [138]
- G. Leitmann.
An introduction to optimal control, Mc Graw Hill, New York, 1966. - [139]
- J. Lions.
Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles, Dunod, Paris, 1968. - [140]
- J. Lions.
Perturbations singulières dans les problèmes aux limites et en contrôle optimal, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1973, vol. 323. - [141]
- J. Lions.
Contrôle des systèmes distribués singuliers, Dunod, Paris, 1983. - [142]
- K. Malanowski, C. Büskens, H. Maurer.
Convergence of approximations to nonlinear optimal control problems, in: Mathematical programming with data perturbations, New York, Lecture Notes in Pure and Appl. Math., Dekker, 1998, vol. 195, p. 253–284. - [143]
- H. Markowitz.
The elimination form of the inverse and its application to linear programming, in: Management Science. Journal of the Institute of Management Science. Application and Theory Series, 1957, vol. 3, p. 255–269. - [144]
- P. Martinon, J. Bonnans, E. Trélat.
Singular arcs in the generalized Goddard's Problem, in: J. Optimization Theory Applications, 2007, To appear. Preprint: INRIA Report RR-6157. - [145]
- J. Morales, J. Nocedal, R. Waltz, G. Liu, J. Goux.
Assessing the Potential of Interior Methods for Nonlinear Optimization, 2001, Unpublished manuscript. - [146]
- R. Munos.
Policy gradient in continuous time, in: J. Machine Learning Research, 2006, vol. 7, p. 771–791. - [147]
- A. Nemirovski, A. Shapiro.
Convex approximations of chance constrained programs, in: SIAM J. Optim., 2006, vol. 17, no 4, p. 969–996 (electronic). - [148]
- J. Nocedal, S. Wright.
Numerical optimization, Springer-Verlag, New York, 1999. - [149]
- S. Osher, C. Shu.
High essentially nonoscillatory schemes for Hamilton-Jacobi equations, in: SIAM J. Numer. Anal., 1991, vol. 28, no 4, p. 907-922. - [150]
- M. Pereira, L. M. Pinto.
Multi-stage stochastic optimization applied to energy planning, in: Mathematical Programming, 1991, vol. 52, no 2, Ser. B, p. 359–375. - [151]
- H. J. Pesch.
A practical guide to the solution of real-life optimal control problems, in: Control and Cybernetics, 1994, vol. 23, p. 7–60. - [152]
- N. Petit, M. Milam, R. Murray.
A new computational method for optimal control of a class of constrained systems governed by partial differential equations, in: IFAC, 2002. - [153]
- H. Pham.
Optimisation et Contrôle Stochastique Appliqués à la Finance, Springer Verlag, 2007, no 61. - [154]
- L. Pontryagin, V. Boltyanski, R. Gamkrelidze, E. Michtchenko.
The Mathematical Theory of Optimal Processes, Wiley Interscience, New York, 1962. - [155]
- M. Powell.
A method for nonlinear constraints in minimization problems, in: Optimization, R. Fletcher (editor), Academic Press, New York, 1969, p. 283-298. - [156]
- M. Powell.
Algorithms for nonlinear constraints that use Lagrangian functions, in: Mathematical Programming, 1978, vol. 14, p. 224-248. - [157]
- H. Robbins.
A generalized Legendre-Clebsch condition for the singular case of optimal control, in: IBM J. of Research and Development, 1967, vol. 11, p. 361-372. - [158]
- R. Rockafellar, S. Uryasev, M. Zabarankin.
Optimality conditions in portfolio analysis with general deviation measures, in: Mathematical Programming, 2006, vol. 108, no 2-3, Ser. B, p. 515–540. - [159]
- P. Roe.
Some contributions to the modelling of discontinuous flows, in: Lectures in Applied Mathematics, 1985, vol. 22, p. 163–193. - [160]
- A. Rösch, F. Tröltzsch.
Sufficient second-order optimality conditions for an elliptic optimal control problem with pointwise control-state constraints, in: SIAM J. Optim., 2006, vol. 17, no 3, p. 776–794 (electronic). - [161]
- I. Ross, F. Fahroo.
Pseudospectral knotting methods for solving optimal control problems, in: AIAA Journal of Guidance, Control and Dynamics, 2004, vol. 27, p. 397–508. - [162]
- A. Ruszczyński, A. Shapiro.
Conditional risk mapping, in: Math. Oper. Res., 2006, vol. 31, no 3, p. 544–561. - [163]
- A. Shapiro, A. Nemirovski.
On complexity of stochastic programming problems, in: Continuous optimization, New York, Appl. Optim., Springer, 2005, vol. 99, p. 111–146. - [164]
- A. Shapiro.
Inference of statistical bounds for multistage stochastic programming problems, in: Math. Methods Oper. Res., 2003, vol. 58, no 1, p. 57–68. - [165]
- J. Vial, R. Apparigliato.
Optimisation Robuste Linéaire - Une introduction succinte, EDF R&D, Dept OSIRIS, H-R32-2006-04801-FR, 1 av. Général de Gaulle, F-92141 Clamart, 2007, Technical report. - [166]
- A. Wächter, L. Biegler.
On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, in: Mathematical Programming Series A, 2006, vol. 106, p. 25-57. - [167]
- L. Young.
Lectures on the calculus of variations and optimal control theory, W. B. Saunders Co., Philadelphia, 1969. - [168]
- B. Øksendal.
Stochastic differential equations, Universitext, Sixth, Springer-Verlag, Berlin, 2003.