Team Commands

Members
Overall Objectives
Scientific Foundations
Application Domains
Software
New Results
Contracts and Grants with Industry
Other Grants and Activities
Dissemination
Bibliography

Bibliography

Major publications by the team in recent years

[1]
N. Bérend, J. Bonnans, J. Laurent-Varin, M. Haddou, C. Talbot.
An Interior-Point Approach to Trajectory Optimization, in: J. Guidance, Control and Dynamics, 2007, vol. 30, no 5, p. 1228-1238.
[2]
O. Bokanowski, B. Bruder, S. Maroso, H. Zidani.
Numerical approximation for a superreplication problem under gamma constraints, in: SIAM. Num. Analysis., 2009, vol. 47(3), p. 2289–2320.
[3]
O. Bokanowski, N. Megdich, H. Zidani.
Convergence of a non-monotone scheme for Hamilton-Jacobi-Bellman equations with discontinuous initial data, in: Numerische Mathematik - DOI: 10.1007/s00211-009-0271-1, 2009.
[4]
J. Bonnans, J. C. Gilbert, C. Lemaréchal, C. Sagastizábal.
Numerical Optimization: theoretical and numerical aspects, Universitext, Springer-Verlag, Berlin, 2006, second edition.
[5]
J. Bonnans, S. Maroso, H. Zidani.
Error estimates for a stochastic impulse control problem, in: Appl. Math. and Optim., 2007, vol. 55, no 3, p. 327–357.
[6]
J. Bonnans, A. Shapiro.
Perturbation analysis of optimization problems, Springer-Verlag, New York, 2000.
[7]
J. Bonnans, H. Zidani.
Consistency of generalized finite difference schemes for the stochastic HJB equation, in: SIAM J. Numerical Analysis, 2003, vol. 41, p. 1008-1021.
[8]
B. Bonnard, L. Faubourg, E. Trélat.
Mécanique céleste et contrôle des véhicules spatiaux, Springer-Verlag, 2006.
[9]
J. Gergaud, P. Martinon.
Using switching detection and variational equations for the shooting method, in: Optimal Control Applications and Methods, 2007, vol. 28, no 2, p. 95–116.
[10]
P. Martinon, J. Bonnans, E. Trélat.
Singular arcs in the generalized Goddard's Problem, in: J. Optimization Theory Applications, 2008, vol. 139, no 2, p. 439-4361.

Publications of the year

Articles in International Peer-Reviewed Journal

[11]
J. André, J. Bonnans.
Optimal structure of gas transmission trunklines, in: Optimization and Engineering, 2010, Rapport de Recherche INRIA RR 6791, Jan 2009. Accepted Oct. 2009.
[12]
M. André, J. Bonnans, L. Cornibert.
Planning reinforcement on gas transportation networks with optimization methods, in: European J. Operational Research, 2009, vol. 197, no 3, p. 1019-1027.
[13]
O. Bokanowski, A. Briani, H. Zidani.
Minumum time control problems for non autonomous differential equations, in: Systems & Control Letters, 2009, vol. 58, p. 742–746.
[14]
O. Bokanowski, B. Bruder, S. Maroso, H. Zidani.
Numerical approximation for a superreplication problem under gamma constraints, in: SIAM. Num. Analysis., 2009, vol. 47(3), p. 2289–2320.
[15]
O. Bokanowski, E. Cristiani, H. Zidani.
An efficient data structure and accurate scheme to solve front propagation problems, in: Journal of Scientific Computing, 2009.
[16]
O. Bokanowski, N. Forcadel, H. Zidani.
L1-error estimates for numerical approximations of Hamilton-Jacobi-Bellman equations in dimension 1, in: Mathematics of Computation, 2009.
[17]
O. Bokanowski, S. Maroso, H. Zidani.
Some convergence results for Howard's algorithm, in: SIAM. J. Num. Analysis., 2009, vol. 47(4), p. 3001–3026.
[18]
O. Bokanowski, N. Megdich, H. Zidani.
Convergence of a non-monotone scheme for Hamilton-Jacobi-Bellman equations with discontinuous initial data, in: Numerische Mathematik, 2009.
[19]
J. Bonnans, A. Hermant.
No Gap Second order Optimality Conditions for Optimal Control Problems with a single State Constraint and Control, in: Mathematical Programming, Series B, 2009, vol. 117, p. 21-50.
[20]
J. Bonnans, A. Hermant.
Revisiting the Analysis of Optimal Control Problems with Several State Constraints, in: Control and Cybernetics, 2009, vol. 34, no 4.
[21]
J. Bonnans, A. Hermant.
Second-order Analysis for Optimal Control Problems with Pure State Constraints and Mixed Control-State Constraints, in: Annales de l'I.H.P. - Nonlinear Analysis, 2009, vol. 26, no 2, p. 561-598.
[22]
J. Bonnans, M. Lebelle.
Explicit polyhedral approximation of the Euclidean ball, in: RAIRO-RO, 2010, vol. 44, To appear.
[23]
J. Bonnans, N. Osmolovskiĭ.
Second-order analysis of optimal control problems with control and initial-final state constraints, in: J. Convex Analysis, 2010, vol. 17.
[24]
A. Briani, R. Monneau.
Time-homogenization of a first order system arising in the modelling of the dynamics of dislocations densities, in: Comptes Rendus de l'Académie des sciences Paris Ser. I, 2009, vol. 347, p. 231–236.
[25]
P. Martinon, J. Bonnans, E. Trélat.
Numerical study of optimal trajectories with singular arcs for space launcher problems, in: AIAA J. of Guidance, Control and Dynamics, 2009, vol. 32, no 1, p. 51-55.
[26]
M. Quincampoix, O. Serea.
The problem of optimal control with reflection s tudied through a linear optimization problem stated on occupational measures, in: Nonlinear Analysis TMA, 2010, Accepted under minor revision.
[27]
O. Serea.
Reflected differential games, in: SIAM J. Control Optim., 2009, vol. 48, no 4, p. 2516-2532.

Articles in Non Peer-Reviewed Journal

[28]
J. Bonnans, D. Tiba.
Control problems with mixed constraints and application to an optimal investment problem, in: Mathematical Reports (Romanian Academy of Sciences), 2009, vol. 11, no 4, Dedicated to Dr. Constantin Varsan on the occasion of his 70th Birthday.

Internal Reports

[29]
N. Alibaud, A. Briani, R. Monneau.
Diffusion as a singular homogenization of the Frenkel-Kontorova model, 2009, submitted, hal-00372407.
[30]
F. Alvarez, J. Bolte, J. Bonnans, F. Silva.
Asymptotic expansions for interior penalty solutions of control constrained linear-quadratic problems, INRIA, 2009, no RR 6863, Technical report.
[31]
O. Bokanowski, N. Forcadel, H. Zidani.
Reachability and minimal times for state constrained nonlinear problems without any controllability assumption, 2009, submitted, hal-00395589.
[32]
J. Bonnans, Z. Cen, T. Christel.
Stochastic programming using optimal quantization, INRIA, 2009, To appear.
[33]
J. Bonnans, F. Silva.
Asymptotic expansions for the solution of a penalized control constrained semilinear elliptic problem, INRIA, December 2009, no 7126, Technical report.
[34]
A. Briani, H. Zidani.
Characterisation of the value function of final state constrained control problems with BV trajectories, 2009, submitted.
[35]
E. Cristiani, P. Martinon.
Initialization of the shooting method via the Hamilton-Jacobi-Bellman approach, 2010, submitted, Rapport de Recherche INRIA RR 7139, hal inria-00439543.
[36]
J. Krawczyk, O. Serea.
A viability theory approach to a two-stage optimal control problem, 2009
http://ideas.repec.org/p/pra/mprapa/10103.html, Technical report.

References in notes

[37]
A. Ruszczyński, A. Shapiro (editors)
Stochastic Programming, Handbook in Operations Research and Management, Elsevier, Amsterdam, 2003, vol. 10.
[38]
R. Abgrall.
Numerical discretization of boundary conditions for first order Hamilton-Jacobi equations, in: SIAM J. Numerical Analysis, 2003, vol. 41, no 6, p. 2233–2261.
[39]
R. Abgrall, S. Augoula.
High order numerical discretization for Hamilton-Jacobi equations on triangular meshes, in: J. Scientific Computing, 2000, vol. 15, no 2, p. 197–229.
[40]
E. Allgower, K. Georg.
Numerical Continuation Methods, Springer-Verlag, Berlin, 1990.
[41]
P. Artzner, F. Delbaen, J. Eber, D. Heath.
Coherent measures of risk, in: Mathematical Finance, 1999, vol. 9, no 3, p. 203–228.
[42]
J. Aubin, H. Frankowska.
Set-valued analysis, Birkhäuser, Boston, 1990.
[43]
V. Bally, G. Pagès, J. Printems.
A quantization tree method for pricing and hedging multidimensional American options, in: Math. Finance, 2005, vol. 15, no 1, p. 119–168.
[44]
V. Barbu.
Optimal control of variational inequalities, Research Notes in Mathematics, Pitman, Boston, 1984, vol. 100.
[45]
M. Bardi, I. Capuzzo-Dolcetta.
Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Systems and Control: Foundations and Applications, Birkhäuser, Boston, 1997.
[46]
G. Barles.
Solutions de viscosité des équations de Hamilton-Jacobi, Mathématiques et Applications, Springer, Paris, 1994, vol. 17.
[47]
G. Barles, E. Jakobsen.
Error bounds for monotone approximation schemes for Hamilton-Jacobi-Bellman equations, in: SIAM J. Numerical Analysis, 2005, vol. 43, no 2, p. 540–558 (electronic).
[48]
A. Ben-Tal, B. Golany, A. Nemirovski, J. Vial.
Supplier-Retailer Flexible Commitments Contracts: A Robust Optimization Approach, in: Manufacturing and Service Operations Management, 2005, vol. 7, no 3, p. 248-273.
[49]
A. Ben-Tal, A. Nemirovski.
Robust convex optimization, in: Mathematics of Operations Research, 1998, vol. 23, p. 769–805.
[50]
A. Ben-Tal, M. Teboulle.
An old-new concept of convex risk measures: the optimized certainty equivalent, in: Mathematical Finance, 2007, vol. 17, no 3, p. 449–476.
[51]
N. Bérend, J. Bonnans, J. Laurent-Varin, M. Haddou, C. Talbot.
An Interior-Point Approach to Trajectory Optimization, in: AIAA J. Guidance, Control and Dynamics, 2005, vol. 30, no 5, p. 1228- -1238.
[52]
N. Bérend, J. Bonnans, J. Laurent-Varin, M. Haddou, C. Talbot.
Fast Linear Algebra for Multiarc Trajectory Optimization, in: Large scale nonlinear optimization, G. D. Pillo, M. Roma (editors), Nonconvex Optimization and Its Applications, Springer, 2006, vol. 83, p. 1–14.
[53]
M. Bergounioux, H. Zidani.
A fully Discrete Approximation for a Control Problem of Parabolic Variational Inequalities, in: SIAM J. Numerical Analysis, 2002, vol. 39, no 6, p. 2014-2033.
[54]
A. Bermúdez, C. Saguez.
Optimal control of a Signorini problem, in: SIAM Journal on Control and Optimization, 1987, vol. 25, p. 576–582.
[55]
D. Bertsekas.
Constrained optimization and Lagrange multipliers methods, Academic Press, New York, 1982.
[56]
D. Bertsekas.
Dynamic programming and optimal control (2 volumes), Athena Scientific, Belmont, Massachusetts, 1995.
[57]
D. Bertsekas, J. Tsitsiklis.
Neuro-dynamic programming (2nd edition), Athena Scientific, Belmont, Mass., 1996.
[58]
J. Betts.
Practical methods for optimal control using nonlinear programming, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001.
[59]
J. Betts.
Survey of Numerical Methods for Trajectory Optimization, in: AIAA J. of Guidance, Control and Dynamics, 1998, vol. 21, p. 193-207.
[60]
G. Blanchon, J. Dodu, J. Bonnans.
Optimisation des réseaux électriques de grande taille, in: Analysis and optimization of systems, A. Bensoussan, J. Lions (editors), Lecture Notes in Information and Control Sciences, Springer-Verlag, Berlin, 1990, vol. 144, p. 423-431.
[61]
G. Bliss.
Lectures on the Calculus of Variations, University of Chicago Press, Chicago, Illinois, 1946.
[62]
H. Bock.
Numerical treatment of inverse problems in chemical reaction kinetics, in: Modelling of Chemical Reaction Systems, Heidelberg, Springer Series in Chemical Physics, Springer, 1981, vol. 18, p. 102–125.
[63]
O. Bokanowski, B. Bruder, S. Maroso, H. Zidani.
Numerical approximation for a superreplication problem under gamma constraints, in: SIAM. Num. Analysis., 2009, vol. 47(3), p. 2289–2320.
[64]
O. Bokanowski, N. Megdich, H. Zidani.
An adaptative antidissipative method for optimal control problems, in: ARIMA, 2006, vol. 5, p. 256–271.
[65]
O. Bokanowski, H. Zidani.
Anti-diffusive schemes for linear advection and application to Hamilton-Jacobi-Bellman equations, in: J. Sci. Computing, 2007, vol. 30, no 1, p. 1–33.
[66]
O. Bokanowski, H. Zidani.
Anti-dissipative schemes for advection and application to Hamilton-Jacobi-Bellman equations, in: J. Sci. Computing, 2007, vol. 30, no 1, p. 1–33.
[67]
J. Bonnans.
Optimisation Continue, Dunod, Paris, 2006.
[68]
J. Bonnans.
Second order analysis for control constrained optimal control problems of semilinear elliptic systems, in: Journal of Applied Mathematics & Optimization, 1998, vol. 38, p. 303-325.
[69]
J. Bonnans, E. Casas.
An extension of Pontryagin's principle for state-constrained optimal control of semilinear elliptic equations and variational inequalities, in: SIAM J. Control Optimization, 1995, vol. 33, no 1, p. 274-298.
[70]
J. Bonnans, P. Chartier, H. Zidani.
Discrete approximations of the Hamilton-Jacobi equation for an optimal control problem of a differential-algebraic system, in: Control and Cybernetics, 2003, vol. 32.
[71]
J. Bonnans, R. B. Fourati, H. Smaoui.
The obstacle problem for water tanks, in: Journal de Mathématiques Pures et Appliquées, 2003, vol. 82, no 11, p. 1527–1553.
[72]
J. Bonnans, J. C. Gilbert, C. Lemaréchal, C. Sagastizábal.
Numerical Optimization: theoretical and numerical aspects, Universitext, Springer-Verlag, Berlin, 2006, second edition.
[73]
J. Bonnans, T. Guilbaud, A. Ketfi-Cherif, C. Sagastizábal, D. von Wissel, H. Zidani.
Parametric optimization of hybrid car engines, in: Optimization and Engineering, 2004, vol. 5-4, p. 395-415.
[74]
J. Bonnans, A. Hermant.
Well-Posedness of the Shooting Algorithm for State Constrained Optimal Control Problems with a Single Constraint and Control, in: SIAM J. Control Optimization, 2007, vol. 46, no 4, p. 1398–1430.
[75]
J. Bonnans, A. Hermant.
Stability and Sensitivity Analysis for Optimal Control Problems with a First-order State Constraint, in: ESAIM:COCV, 2008, vol. 14, no 4, p. 825–863.
[76]
J. Bonnans, A. Hermant.
Second-order Analysis for Optimal Control Problems with Pure State Constraints and Mixed Control-State Constraints, 2009, vol. 26, no 2, p. 561-598.
[77]
J. Bonnans, G. Launay.
Sequential quadratic programming with penalization of the displacement, in: SIAM J. Optimization, 1995, vol. 5, p. 792-812.
[78]
J. Bonnans, G. Launay.
Large Scale Direct Optimal Control Applied to a Re-Entry Problem, in: AIAA J. of Guidance, Control and Dynamics, 1998, vol. 21, p. 996-1000.
[79]
J. Bonnans, J. Laurent-Varin.
Computation of order conditions for symplectic partitioned Runge-Kutta schemes with application to optimal control, in: Numerische Mathematik, 2006, vol. 103, no 1, p. 1–10.
[80]
J. Bonnans, S. Maroso, H. Zidani.
Error estimates for stochastic differential games: the adverse stopping case, in: IMA, J. Numerical Analysis, 2006, vol. 26, p. 188-212.
[81]
J. Bonnans, S. Maroso, H. Zidani.
Error estimates for a stochastic impulse control problem, in: Appl. Math. and Optim., 2007, vol. 55, no 3, p. 327–357.
[82]
J. Bonnans, E. Ottenwaelter, H. Zidani.
Numerical schemes for the two dimensional second-order HJB equation, in: ESAIM: M2AN, 2004, vol. 38, p. 723-735.
[83]
J. Bonnans, A. Shapiro.
Perturbation analysis of optimization problems, Springer-Verlag, New York, 2000.
[84]
J. Bonnans, D. Tiba.
Pontryagin's principle in the control of semilinear elliptic variational inequalities, in: Applied Mathematics and Optimization, 1991, vol. 23, no 3, p. 299-312.
[85]
J. Bonnans, H. Zidani.
Consistency of generalized finite difference schemes for the stochastic HJB equation, in: SIAM J. Numerical Analysis, 2003, vol. 41, p. 1008-1021.
[86]
B. Bonnard, L. Faubourg, G. Launay, E. Trélat.
Optimal control with state constraints and the space shuttle re-entry problem, in: Journal of Dynamical and Control Systems, 2003, vol. 9, no 2, p. 155–199.
[87]
B. Bonnard, L. Faubourg, E. Trélat.
Optimal control of the atmospheric arc of a space shuttle and numerical simulations by multiple-shooting techniques, in: Math. Models Methods Applied Sciences, 2005, vol. 15, no 1, p. 109–140.
[88]
B. Bonnard, L. Faubourg, E. Trélat.
Mécanique céleste et contrôle des véhicules spatiaux, Mathématiques et Applications, Springer-Verlag, 2006, vol. 51.
[89]
M. Broadie, P. Glasserman, Z. Ha.
Pricing American options by simulation using a stochastic mesh with optimized weights, in: Probabilistic constrained optimization, Dordrecht, Nonconvex Optim. Appl., Kluwer Acad. Publ., 2000, vol. 49, p. 26–44.
[90]
B. Brogliato, M. Mabrouk, A. Z. Rio.
On the controllability of linear juggling mechanical systems, in: Systems Control Lett., 2006, vol. 55, no 4, p. 350–367.
[91]
A. E. Bryson, Y.-C. Ho.
Applied optimal control, Hemisphere Publishing, New-York, 1975.
[92]
F. Clarke.
A new approach to Lagrange multipliers, in: Mathematics of Operations Research, 1976, vol. 2, p. 165-174.
[93]
J.-M. Coron, E. Trélat.
Global steady-state controllability of 1-D semilinear heat equations, in: SIAM J. Control Optimization, 2004, vol. 43, p. 549–569.
[94]
J.-M. Coron, E. Trélat.
Global steady-state stabilization and controllability of 1-D semilinear wave equations, in: Commun. Contemp. Mathematics, 2006, vol. 8, no 4, p. 535–567.
[95]
M. Crandall, L. Evans, P. Lions.
Some properties of viscosity solutions of Hamilton-Jacobi equations, in: Trans. Amer. Math. Soc, 1984, vol. 282, p. 487-502.
[96]
M. Crandall, H. Ishii, P. Lions.
User's guide to viscosity solutions of second order partial differential equations, in: Bull. American Mathematical Society (New Series), 1992, vol. 27, p. 1–67.
[97]
M. Crandall, P. Lions.
Viscosity solutions of Hamilton Jacobi equations, in: Bull. American Mathematical Society, 1983, vol. 277, p. 1–42.
[98]
M. Crandall, P. Lions.
Two approximations of solutions of Hamilton-Jacobi equations, in: Mathematics of Computation, 1984, vol. 43, p. 1–19.
[99]
G. Dantzig, P. Wolfe.
Decomposition principle for linear programs, in: Operations Research, 1959, vol. 8, p. 101-111.
[100]
B. Després, F. Lagoutière.
Contact discontinuity capturing schemes for linear advection and compressible gas dynamics, in: J. Sci. Comput., 2001, vol. 16, p. 479-524.
[101]
B. Després, F. Lagoutière.
A non-linear anti-diffusive scheme for the linear advection equation, in: C. R. Acad. Sci. Paris, Série I, Analyse numérique, 1999, vol. 328, p. 939-944.
[102]
P. Deuflhard.
Newton Methods for Nonlinear Problems, Springer-Verlag, Berlin, 2004.
[103]
M. Diehl, J. Björnberg.
Robust dynamic programming for min-max model predictive control of constrained uncertain systems, in: IEEE Transactions on Automatic Control, 2004, vol. 49, no 12, p. 2253–2257.
[104]
M. Diehl, H. Bock, E. Kostina.
An approximation technique for robust nonlinear optimization, in: Mathematical Programming, 2006, vol. 107, p. 213 - 230.
[105]
L. Dixon, M. Bartholomew-Biggs.
Adjoint-control transformations for solving pratical optimal control problems, in: Optimal Control, Applications and Methods, 1981, vol. 2, p. 365-381.
[106]
A. Dontchev, W. Hager, V. Veliov.
Second-order Runge-Kutta approximations in control constrained optimal control, in: SIAM Journal on Numerical Analysis, 2000, vol. 38, p. 202–226 (electronic).
[107]
J. Dupačová, N. Gröwe-Kuska, W. Römisch.
Scenario reduction in stochastic programming. An approach using probability metrics, in: Math. Program., 2003, vol. 95, no 3, Ser. A, p. 493–511.
[108]
G. Duvaut, J. Lions.
Les inéquations en mécanique et en physique, Dunod, Paris, 1972.
[109]
I. Ekeland.
Nonconvex minimization problems, in: Bulletin of the American Mathematical Society, 1979, vol. 1(New series), p. 443-474.
[110]
M. Falcone, R. Ferretti.
Semi-Lagrangian schemes for Hamilton-Jacobi equations, discrete representation formulae and Godunov methods, in: Journal of Computational Physics, 2002, vol. 175, p. 559–575.
[111]
M. Falcone, R. Ferretti.
Convergence analysis for a class of high-order semi-Lagrangian advection schemes, in: SIAM J. Numer. Anal., 1998, vol. 35, no 3, p. 909–940 (electronic).
[112]
J. Gergaud, P. Martinon.
Using switching detection and variational equations for the shooting method, in: Optimal Control Applications and Methods, 2007, vol. 28, no 2, p. 95–116.
[113]
B. Goh.
Necessary Conditions for Singular extremals involving multiple control variables, in: J. SIAM Control, 1966, vol. 4, p. 716–731.
[114]
W. Hager.
Runge-Kutta methods in optimal control and the transformed adjoint system, in: Numerische Mathematik, 2000, vol. 87, no 2, p. 247–282.
[115]
E. Hairer, C. Lubich, G. Wanner.
Geometric numerical integration, Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 2002, vol. 31.
[116]
E. Hairer, S. P. Nørsett, G. Wanner.
Solving ordinary differential equations. I, Springer Series in Computational Mathematics, Second, Springer-Verlag, Berlin, 1993, vol. 8.
[117]
E. Hairer, G. Wanner.
Solving ordinary differential equations. II, Springer Series in Computational Mathematics, Second, Springer-Verlag, Berlin, 1996, vol. 14.
[118]
S. Han.
Superlinearly convergent variable metric algorithms for general nonlinear programming problems, in: Math. Programming, 1976, vol. 11, p. 263–282.
[119]
P. Harker, J.-S. Pang.
Finite dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications, in: Mathematical Programming, series B, 1990, vol. 48, p. 161-220.
[120]
E. Harten.
ENO schemes with subcell resolution, in: J. Computational Physics, 1989, vol. 83, p. 148–184.
[121]
R. Hartl, S. Sethi, R. Vickson.
A survey of the maximum principles for optimal control problems with state constraints, in: SIAM Review, 1995, vol. 37, p. 181–218.
[122]
A. Hermant.
Optimal Control of the Atmospheric Reentry of a Space Shuttle by an Homotopy Method, INRIA, 2008, no RR 6627, Rapport de Recherche.
[123]
M. Hestenes.
Multiplier and gradient methods, in: Journal of Optimization Theory and Applications, 1969, vol. 4, p. 303-320.
[124]
C. Hu, C. Shu.
A discontinuous Galerkin finite element method for Hamilton-Jacobi equations, in: SIAM J. on Scientific Computing, 1999, vol. 21, no 2, p. 666–690 (electronic).
[125]
C. Hu, C. Shu.
A discontinuous Galerkin finite element method for Hamilton-Jacobi equations, in: SIAM J. on Scientific Computing, 1999, vol. 21, no 2, p. 666–690 (electronic).
[126]
A. Ioffe, V. Tihomirov.
Theory of Extremal Problems, North-Holland Publishing Company, Amsterdam, 1979, Russian Edition: Nauka, Moscow, 1974.
[127]
T. Jockenhövel, L. Biegler, A. Wächter.
Dynamic Optimization of the Tennessee Eastman Process Using the OptControlCentre, in: Computers and Chemical Engineering, 2003, vol. 27, p. 1513–1531.
[128]
P. Kall, S. Wallace.
Stochastic Programming, Wiley, Chichester, 1994.
[129]
N. Karmarkar.
A new polynomial time algorithm for linear programming, in: Combinatorica, 1984, vol. 4, p. 373-395.
[130]
D. Kinderlehrer, G. Stampacchia.
An introduction to variational inequalities and their applications, Academic Press, New York, 1980.
[131]
D. Kraft.
Finite-difference gradients versus error-quadrature gradients in the solution of parameterized optimal control problems, in: Optimal Control, Appl. and Methods, 1981, vol. 2, p. 191-199.
[132]
A. J. Krener, H. Schättler.
The structure of small-time reachable sets in low dimensions, in: SIAM J. Control Optim., 1989, vol. 27, no 1, p. 120–147.
[133]
N. Krylov.
On the rate of convergence of finite-difference approximations for Bellman's equations with variable coefficients, in: Probability Theory and Related Fields, 2000, vol. 117, p. 1–16.
[134]
H. Kushner, P. Dupuis.
Numerical methods for stochastic control problems in continuous time, Applications of mathematics, Springer, New York, 2001, vol. 24, Second edition.
[135]
J.-L. Lagrange.
Mécanique analytique, Paris, 1788, reprinted by J. Gabay, 1989.
[136]
J. Laurent-Varin, N. Bérend, J. Bonnans, C. Talbot.
An efficient optimization method dealing with global RLV (ascent and descent) trajectories, in: Proc. 56th International Astronautical Congress, Fukuoka October 17-21, 2005.
[137]
E. Lee, L. Markus.
Foundations of optimal control theory, John Wiley, New York, 1967.
[138]
G. Leitmann.
An introduction to optimal control, Mc Graw Hill, New York, 1966.
[139]
J. Lions.
Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles, Dunod, Paris, 1968.
[140]
J. Lions.
Perturbations singulières dans les problèmes aux limites et en contrôle optimal, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1973, vol. 323.
[141]
J. Lions.
Contrôle des systèmes distribués singuliers, Dunod, Paris, 1983.
[142]
K. Malanowski, C. Büskens, H. Maurer.
Convergence of approximations to nonlinear optimal control problems, in: Mathematical programming with data perturbations, New York, Lecture Notes in Pure and Appl. Math., Dekker, 1998, vol. 195, p. 253–284.
[143]
H. Markowitz.
The elimination form of the inverse and its application to linear programming, in: Management Science. Journal of the Institute of Management Science. Application and Theory Series, 1957, vol. 3, p. 255–269.
[144]
P. Martinon, J. Bonnans, E. Trélat.
Singular arcs in the generalized Goddard's Problem, in: J. Optimization Theory Applications, 2007, To appear. Preprint: INRIA Report RR-6157.
[145]
J. Morales, J. Nocedal, R. Waltz, G. Liu, J. Goux.
Assessing the Potential of Interior Methods for Nonlinear Optimization, 2001, Unpublished manuscript.
[146]
R. Munos.
Policy gradient in continuous time, in: J. Machine Learning Research, 2006, vol. 7, p. 771–791.
[147]
A. Nemirovski, A. Shapiro.
Convex approximations of chance constrained programs, in: SIAM J. Optim., 2006, vol. 17, no 4, p. 969–996 (electronic).
[148]
J. Nocedal, S. Wright.
Numerical optimization, Springer-Verlag, New York, 1999.
[149]
S. Osher, C. Shu.
High essentially nonoscillatory schemes for Hamilton-Jacobi equations, in: SIAM J. Numer. Anal., 1991, vol. 28, no 4, p. 907-922.
[150]
M. Pereira, L. M. Pinto.
Multi-stage stochastic optimization applied to energy planning, in: Mathematical Programming, 1991, vol. 52, no 2, Ser. B, p. 359–375.
[151]
H. J. Pesch.
A practical guide to the solution of real-life optimal control problems, in: Control and Cybernetics, 1994, vol. 23, p. 7–60.
[152]
N. Petit, M. Milam, R. Murray.
A new computational method for optimal control of a class of constrained systems governed by partial differential equations, in: IFAC, 2002.
[153]
H. Pham.
Optimisation et Contrôle Stochastique Appliqués à la Finance, Springer Verlag, 2007, no 61.
[154]
L. Pontryagin, V. Boltyanski, R. Gamkrelidze, E. Michtchenko.
The Mathematical Theory of Optimal Processes, Wiley Interscience, New York, 1962.
[155]
M. Powell.
A method for nonlinear constraints in minimization problems, in: Optimization, R. Fletcher (editor), Academic Press, New York, 1969, p. 283-298.
[156]
M. Powell.
Algorithms for nonlinear constraints that use Lagrangian functions, in: Mathematical Programming, 1978, vol. 14, p. 224-248.
[157]
H. Robbins.
A generalized Legendre-Clebsch condition for the singular case of optimal control, in: IBM J. of Research and Development, 1967, vol. 11, p. 361-372.
[158]
R. Rockafellar, S. Uryasev, M. Zabarankin.
Optimality conditions in portfolio analysis with general deviation measures, in: Mathematical Programming, 2006, vol. 108, no 2-3, Ser. B, p. 515–540.
[159]
P. Roe.
Some contributions to the modelling of discontinuous flows, in: Lectures in Applied Mathematics, 1985, vol. 22, p. 163–193.
[160]
A. Rösch, F. Tröltzsch.
Sufficient second-order optimality conditions for an elliptic optimal control problem with pointwise control-state constraints, in: SIAM J. Optim., 2006, vol. 17, no 3, p. 776–794 (electronic).
[161]
I. Ross, F. Fahroo.
Pseudospectral knotting methods for solving optimal control problems, in: AIAA Journal of Guidance, Control and Dynamics, 2004, vol. 27, p. 397–508.
[162]
A. Ruszczyński, A. Shapiro.
Conditional risk mapping, in: Math. Oper. Res., 2006, vol. 31, no 3, p. 544–561.
[163]
A. Shapiro, A. Nemirovski.
On complexity of stochastic programming problems, in: Continuous optimization, New York, Appl. Optim., Springer, 2005, vol. 99, p. 111–146.
[164]
A. Shapiro.
Inference of statistical bounds for multistage stochastic programming problems, in: Math. Methods Oper. Res., 2003, vol. 58, no 1, p. 57–68.
[165]
J. Vial, R. Apparigliato.
Optimisation Robuste Linéaire - Une introduction succinte, EDF R&D, Dept OSIRIS, H-R32-2006-04801-FR, 1 av. Général de Gaulle, F-92141 Clamart, 2007, Technical report.
[166]
A. Wächter, L. Biegler.
On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, in: Mathematical Programming Series A, 2006, vol. 106, p. 25-57.
[167]
L. Young.
Lectures on the calculus of variations and optimal control theory, W. B. Saunders Co., Philadelphia, 1969.
[168]
B. Øksendal.
Stochastic differential equations, Universitext, Sixth, Springer-Verlag, Berlin, 2003.

previous
next