Team Calvi

Members
Overall Objectives
Scientific Foundations
Application Domains
Software
New Results
Contracts and Grants with Industry
Dissemination
Bibliography

Bibliography

Major publications by the team in recent years

[1]
F. Assous, P. Ciarlet, S. Labrunie, J. Segré.
Numerical solution to the time-dependent Maxwell equations in axisymmetric singular domains: the singular complement method, in: J. Comput. Phys., 2003, vol. 191, no 1, p. 147–176
http://dx.doi.org/10.1016/S0021-9991(03)00309-7.
[2]
N. Besse.
Convergence of a semi-Lagrangian scheme for the one-dimensional Vlasov-Poisson system, in: SIAM J. Numer. Anal., 2004, vol. 42, no 1, p. 350–382 (electronic).
[3]
N. Besse, M. Mehrenberger.
Convergence of classes of high-order semi-Lagrangian schemes for the Vlasov Poisson system, in: Math. Comp., 2005, vol. 77, p. 93–123.
[4]
M. Campos Pinto, M. Mehrenberger.
Convergence of an adaptive semi-Lagrangian scheme for the Vlasov-Poisson system, in: Numer. Math., 2008, vol. 108, no 3, p. 407-444.
[5]
J. A. Carrillo, S. Labrunie.
Global Solutions for the One-Dimensional Vlasov-Maxwell System for Laser-Plasma Interaction, in: Math. Models Methodes Appl. Sci., 2006, vol. 16, p. 19–57.
[6]
F. Filbet, E. Sonnendrücker, P. Bertrand.
Conservative numerical schemes for the Vlasov equation, in: J. Comput. Phys., 2001, vol. 172, no 1, p. 166–187.
[7]
F. Filbet, E. Sonnendrücker.
Modeling and numerical simulation of space charge dominated beams in the paraxial approximation, in: Math. Models Methods Appl. Sci., 2006, vol. 16, no 5, p. 763–791.
[8]
E. Frénod, E. Sonnendrücker.
The finite Larmor radius approximation, in: SIAM J. Math. Anal., 2001, vol. 32, no 6, p. 1227–1247.
[9]
V. Grandgirard, Y. Sarazin, P. Angelino, A. Bottino, N. Crouseilles, G. Darmet, G. Dif-Pradalier, X. Garbet, P. Ghendrih, S. Jolliet, G. Latu, E. Sonnendrücker, L. Villard.
Global full-f gyrokinetic simulations of plasma turbulence, in: Plasma Physics and Controlled Fusion, 2007, vol. 49, no 12B, p. B173-B182
http://stacks.iop.org/0741-3335/49/B173.
[10]
E. Sonnendrücker, J.-R. Roche, P. Bertrand, A. Ghizzo.
The semi-Lagrangian method for the numerical resolution of the Vlasov equation, in: J. Comput. Phys., 1999, vol. 149, no 2, p. 201–220.

Publications of the year

Doctoral Dissertations and Habilitation Theses

[11]
N. Besse.
Contributions to mathematical analysis and numerical approximation in plasma physics, Université Henri Poincaré Nancy, 2009, Habilitation à diriger des Recherches.
[12]
A. Mouton.
Multiscale approximation of the Vlasov equation, Université de Strasbourg, 2009, Ph. D. Thesis.

Articles in International Peer-Reviewed Journal

[13]
N. Alaa, W. Bouarifi, G. Chehbouni, R. Khiri, L. Hanich, J.-R. Roche.
Assimilation of the soil resistance to evaporation in ICARE, in: Int. J. Math. Stat., 2009, vol. 4, p. 38–56
http://www.ceserp.com/cp-jour/index.php?journal=ijms&page=article&op=view&path%5B%5D=32.
[14]
C. Altmann, T. Belat, M. Gutnic, P. Helluy, H. Mathis, E. Sonnendrücker, W. Angulo, J.-M. Hérard.
A local time-stepping Discontinuous Galerkin algorithm for the MHD system, in: ESAIM Proceedings, 2009, vol. 28, p. 33-54.
[15]
R. Belaouar, N. Crouseilles, P. Degond, E. Sonnendrücker.
An asymptotically stable semi-lagrangian scheme in the quasi-neutral limit, in: J. Sc. Comput., 2009, vol. 112, no 2, p. 169-195
http://dx.doi.org/10.1007/s10915-009-9302-4.
[16]
N. Besse, F. Berthelin, Y. Brenier, P. Bertrand.
The multi-water-bag equations for collisionless kinetic modeling, in: Kinetic and Related Models, 2009, vol. 2, p. 39-90
http://dx.doi.org/10.3934/krm.2009.2.39.
[17]
N. Besse, P. Bertrand.
The gyro-water-bag approach in nonlinear gyrokinetic turbulence, in: J. Comput. Phys., 2009, vol. 228, p. 3973-3995
http://dx.doi.org/10.1016/j.jcp.2009.02.025.
[18]
M. Bostan.
Permanent regimes for the Vlasov-Maxwell equations with specular boundary conditions, in: Journal of Physics A: Mathematical and Theoretical, 2009, to appear.
[19]
M. Bostan.
Stationary solutions for the one dimensional Nordström-Vlasov system, in: Asymptot. Anal., 2009, vol. 64, no 3-4, p. 155-183.
[20]
M. Bostan, J. A. Carrillo.
Global solutions for the one dimensional Water-Bag model, in: Commun. Math. Sci., 2009, vol. 7, p. 129-141
http://projecteuclid.org/euclid.cms/1238158608.
[21]
M. Bostan, N. Crouseilles.
Convergence of a semi-Lagrangian scheme for the reduced Vlasov-Maxwell system for laser-plasma interaction, in: Numer. Math., 2009, vol. 112, p. 169-195
http://dx.doi.org/10.1007/s00211-009-0216-8.
[22]
M. Bostan, I. Gamba, T. Goudon, A. Vasseur.
Boundary value problems for the stationary Vlasov-Boltzmann-Poisson equation, in: Indiana University Mathematical Journal, 2009, to appear.
[23]
M. Bostan, G. Namah.
Remarks on bounded solutions of steady Hamilton-Jacobi equations, in: C.R. Math. Acad. Sci. Paris, 2009, vol. 347, no 15-16, p. 873-878.
[24]
J.-P. Braeunig, B. Desjardins, J.-M. Ghidaglia.
A totally Eulerian finite volume solver for multi-material fluid flows, in: Eur. J. Mech. B–Fluids, 2009, vol. 28, p. 475–485
http://dx.doi.org/10.1016/j.euromechflu.2009.03.003.
[25]
A. Canelas, J.-R. Roche, J. Herskovits.
Inductor shape optimization for electromagnetic casting,, in: Structural and Multidisciplinary Optimization, 2009, vol. 39, no 6, p. 589-606
http://dx.doi.org/10.1007/s00158-009-0386-0.
[26]
P. Ciarlet, S. Labrunie.
Numerical analysis of the generalized Maxwell equations (with an elliptic correction) for charged particle simulations, in: Math. Models Methods Appl. Sci., 2009, vol. 19, no 11, p. 1959-1994.
[27]
N. Crouseilles, M. Mehrenberger, E. Sonnendrücker.
Conservative semi-Lagrangian schemes for the Vlasov equation, in: J. Comput. Phys., 2009, to appear.
[28]
N. Crouseilles, T. Respaud, E. Sonnendrücker.
A forward semi-Lagrangian method for the numerical solution of the Vlasov equation, in: Comput. Phys. Comm., 2009, vol. 180, p. 1730-1745
http://dx.doi.org/10.1016/j.cpc.2009.04.024.
[29]
F. Haas, G. Manfredi, P. K. Shukla, P.-A. Hervieux.
Breather mode in the many-electron dynamics of semiconductor quantum wells, in: Physical Review B (Condensed Matter and Materials Physics), 2009, vol. 80, no 7, 073301 p
http://link.aps.org/abstract/PRB/v80/e073301.
[30]
M. Iguernane, S. Nazarov, J.-R. Roche, J. Sokolowski, K. Szulc.
Topological derivatives for semilinear elliptic equations, in: Int. J. Appl. Math. Comput.Sci, 2009, vol. 19, no 2, p. 191– 205
http://www.amcs.uz.zgora.pl/?action=paper_details&id_paper=430.
[31]
R. Jasiak, G. Manfredi, P.-A. Hervieux, M. Haefele.
Quantum-classical transition in the electron dynamics of thin metal films, in: New Journal of Physics, 2009, vol. 11, no 6, 15 p
http://stacks.iop.org/1367-2630/11/063042.
[32]
R. Klein, E. Gravier, P. Morel, N. Besse, P. Bertrand.
Gyrokinetic water-bag modeling of a plasma column: magnetic moment distribution and finite Larmor radius effects, in: Phys. Plasmas, 2009, vol. 16, p. 082106-1 – 082106-8
http://dx.doi.org/10.1063/1.3174926.
[33]
G. Manfredi, P.-A. Hervieux.
Laser induced ultrafast demagnetization in diluted magnetic semiconductor nanostructures, in: Eur. Phys. J. D, apr 2009, vol. 52, no 1-3, p. 155-158
http://dx.doi.org/10.1140/epjd/e2008-00281-1.
[34]
G. Manfredi, P.-A. Hervieux.
Loschmidt echo for the many-electron dynamics in nonparabolic quantum wells, in: New Journal of Physics, 2009, vol. 11, no 1, 16 p
http://stacks.iop.org/1367-2630/11/013050.
[35]
O. Morandi, P.-A. Hervieux, G. Manfredi.
Ultrafast magnetization dynamics in diluted magnetic semiconductors, in: New Journal of Physics, 2009, vol. 11, no 7, 12 p
http://stacks.iop.org/1367-2630/11/073010.
[36]
Y. Sarazin, V. Grandgirard, J. Abiteboul, S. Allfrey, X. Garbet, P. Ghendrih, G. Latu, A. Strugarek, G. Dif-Pradalier.
Large scale dynamics in flux driven gyrokinetic turbulence, in: Nuclear Fusion, 2009, to appear.

International Peer-Reviewed Conference/Proceedings

[37]
N. Alaa, I. Fatmi, J.-R. Roche.
Resolution of Non-Linear Parabolic Periodic Problems using Domain Decomposition, in: Proceedings of the First International Conference on Parallel, Distributed and Grid Computing for Engineering, 2009.
[38]
J.-P. Braeunig, L. Brosset, F. Dias, J.-M. Ghidaglia.
Phenomenological Study of Liquid Impacts through 2D Compressible Two-fluid Numerical Simulations, in: Proceedings of the Nineteenth (2009) International Offshore and Polar Engineering Conference, The International Society of Offshore and Polar Engineers (ISOPE), 2009
http://www.isope.org/publications/proceedings/ISOPE/ISOPE%202009/start.htm.
[39]
J.-P. Braeunig, N. Crouseilles, M. Mehrenberger, E. Sonnendrücker.
Guiding-Center simulations on curvilinear meshes using semi-Lagrangian conservative methods, in: Proceedings Conference Numerical Models for Controlled Fusion, 2009.
[40]
M. Campos Pinto.
How to predict accurate wavelet grids in adaptive semi-Lagrangian schemes?, in: ESAIM Proceedings, 2009, to appear.
[41]
A. Canelas, J.-R. Roche, J. Herskovits.
Inductor design in electromagnetic casting, in: WCSMO-8, 2009.
[42]
Y. Peysson, J.-R. Roche, P. Bertrand, J.-H. Chatenet, C. Kirsch, A. Mokrani, S. Labrunie.
Mixed augmented varational formulation (MAVF) for lower hybrid full-wave calculations, in: RF: The 18th Topical Conference on Radio Frequency Power in Plasmas., 2009.

Scientific Books (or Scientific Book chapters)

[43]
M. Campos Pinto.
1, in: Adaptive semi-Lagrangian schemes for Vlasov equations, Analytical and Numerical Aspects of Partial Differential Equations, Notes of a Lecture Series. Edited by Etienne Emmrich and Petra Wittbold, de Gruyter, Berlin 2009, 2009, p. 69-114.
[44]
G. Manfredi, P.-A. Hervieux, Y. Yin, N. Crouseilles.
Collective Electron Dynamics in Metallic and Semiconductor Nanostructures, in: "Advances in the atomic-scale modeling of nanosystems and nanostructured materials", C. Massobrio, H. Bulou, C. Goyenex (editors), Lecture Notes in Physics (Springer, Heidelberg, 2010), 2010, vol. 795
http://arxiv.org/abs/0810.3094, to appear.

Internal Reports

[45]
C. Altmann, T. Belat, M. Gutnic, P. Helluy, H. Mathis, E. Sonnendrücker.
Galerkin discontinuous approximation of the MHD equations, INRIA, 2009
http://hal.archives-ouvertes.fr/hal-00337063/en/, Technical report.
[46]
J.-P. Braeunig.
FVCF-NIP method for multi-material compressible fluid flows: some improvements in the computation of condensates evolution., INRIA, 2009, no RR-7121
http://hal.archives-ouvertes.fr/inria-00436255/fr/, Technical report.
[47]
J.-P. Braeunig, N. Crouseilles, M. Mehrenberger, E. Sonnendrücker.
Some numerical aspects of the conservative PSM scheme in a 4D drift kinetic code, INRIA, 2009, no RR-7109
http://hal.inria.fr/INRIA/inria-00435203/fr/, Technical report.

Other Publications

[48]
M. Bostan.
Boundary value problem for the stationary Nordström-Vlasov system, 2009, submitted.
[49]
M. Bostan.
Gyrokinetic Vlasov equation in three dimensional setting. Second order approximation, 2009, submitted.
[50]
M. Bostan.
Transport equations with singular coefficients. Application to the gyro-kinetic models in plasma physics, 2009, submitted.
[51]
M. Campos Pinto, S. Jund, S. Salmon, E. Sonnendrücker.
Charge conserving FEM-PIC schemes on general grids, 2009
http://hal.archives-ouvertes.fr/hal-00311429/fr/, submitted.
[52]
P. Ciarlet, S. Labrunie.
Numerical solution of Maxwell's equations in axisymmetric domains with the Fourier Singular Complement Method, 2009
http://hal.archives-ouvertes.fr/docs/00/42/95/70/PDF/CiLa09-resoumis.pdf, submitted.
[53]
N. Crouseilles, M. Mehrenberger, H. Sellama.
Numerical solution of the gyroaverage operator for the finite gyroradius guiding-center model, 2009, submitted.
[54]
P. Degond, S. Hirstoaga, M.-H. Vignal.
The Vlasov model under large magnetic fields in the low-Mach number regime, 2009
http://hal.archives-ouvertes.fr/hal-00384345/fr/, in revision.
[55]
A. Ghizzo, M. El Mounden, D. Del Sarto, X. Garbet, Y. Sarazin.
Global Gyrokinetic stability of temperature-gradient-driven Trapped Ion Modes with magnetic shear, 2009, submitted to Transport Theory Statistical Physics.
[56]
F. Karami, S. Labrunie, B. Pinçon.
Stationary Solutions to the Vlasov-Poisson System in Singular Geometries, 2009, "VLASOVIA 2009" International Workshop on Theory and Applications of the Vlasov Equation, CIRM Luminy, Marseille.
[57]
S. Labrunie, S. Marchal, J.-R. Roche.
Local existence and uniqueness of the mild solution to the 1D Vlasov-Poisson system with an initial condition of bounded variation, 2009
http://hal.archives-ouvertes.fr/docs/00/39/74/97/PDF/LMaR09a.pdf, submitted.
[58]
T. Respaud, E. Sonnendrücker.
Analysis of a new class of Forward Semi-Lagrangian schemes for the 1D Vlasov-Poisson Equations, 2009
http://hal.archives-ouvertes.fr/hal-00442957/fr/, submitted.

References in notes

[59]
F. Assous, P. Ciarlet, S. Labrunie.
Theoretical tools to solve the axisymmetric Maxwell equations, in: Math. Meth. Appl. Sci., 2002, vol. 25, p. 49–78.
[60]
F. Assous, P. Ciarlet, S. Labrunie.
Solution of axisymmetric Maxwell equations, in: Math. Meth. Appl. Sci., 2003, vol. 26, p. 861–896.
[61]
F. Assous, P. Ciarlet, S. Labrunie, J. Segré.
Numerical solution to the time-dependent Maxwell equations in axisymmetric singular domains: The Singular Complement Method, in: J. Comp. Phys., 2003, vol. 191, p. 147–176.
[62]
F. Assous, P. Ciarlet, S. Labrunie, J. Segré.
Numerical solution to the time-dependent Maxwell equations in axisymmetric singular domains: The Singular Complement Method, in: J. Comput. Phys., 2003, vol. 191, p. 147–176.
[63]
F. Assous, P. Ciarlet, J. Segré.
Numerical solution to the time dependent Maxwell equations in two dimensional singular domains: the Singular Complement Method, in: J. Comput. Phys., 2000, vol. 161, p. 218–249.
[64]
F. Assous, P. Ciarlet, E. Sonnendrücker.
Resolution of the Maxwell equations in a domain with reentrant corners, in: M  2 AN, 1998, vol. 32, p. 359–389.
[65]
C. Bardos, P. Degond.
Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data, in: Ann. Inst. H. Poincaré Anal. Non Linéaire, 1985, vol. 2, no 2, p. 101–118.
[66]
S. Benachour, F. Filbet, P. Laurençot, E. Sonnendrücker.
Global existence for the Vlasov-Darwin system in Im44 $\#8477 ^3$ for small initial data, in: Math. Methods Appl. Sci., 2003, vol. 26, no 4, p. 297–319.
[67]
C. Bernardi, M. Dauge, Y. Maday.
Spectral methods for axisymmetric domains, Series in Applied Mathematics, Gauthier-Villars, Paris and North Holland, Amsterdam, 1999.
[68]
C. Birdsall, A. Langdon.
Plasma Physics via Computer Simulation, McGraw-Hill, New York, 1985.
[69]
Y. Brenier.
Convergence of the Vlasov-Poisson system to the incompressible Euler equations, in: Comm. Partial Differential Equations, 2000, vol. 25, no 3-4, p. 737–754.
[70]
P. Ciarlet, N. Filonov, S. Labrunie.
Un résultat de fermeture pour les équations de Maxwell en géométrie axisymétrique, in: C. R. Acad. Sci. Paris série I, 2000, vol. 331, p. 293–298.
[71]
P. Ciarlet, B. Jung, S. Kaddouri, S. Labrunie, J. Zou.
The Fourier–Singular Complement method for the Poisson problem. Part II: axisymmetric domains, in: Numer. Math., 2006, vol. 102, p. 583–610.
[72]
P. Crispel, P. Degond, M.-H. Vignal.
An asymptotic preserving scheme for the two-fluid Euler-Poisson model in the quasineutral limit, in: J. Comp. Phys., 2007, vol. 223, p. 208–234.
[73]
N. Crouseilles, P.-A. Hervieux, G. Manfredi.
Quantum hydrodynamic model for the nonlinear electron dynamics in thin me tal films, in: Physical Review B, 2008, vol. 78, no 15, 155412 p.
[74]
R. DiPerna, P.-L. Lions.
Global weak solutions of the Vlasov-Maxwell systems, in: Comm. Pure. Appl. Math., 1989, vol. XLII, p. 729–757.
[75]
F. Filbet, E. Sonnendrücker, J.-L. Lemaire.
Direct axisymmetric Vlasov simulations of space charged dominated beams, in: Lecture Notes in Computer Sciences, ICCS 2002, part 3, 2002, p. 305–314.
[76]
F. Filbet, E. Sonnendrücker, P. Bertrand.
Conservative numerical schemes for the Vlasov equation, in: J. Comput. Phys., 2001, vol. 172, no 1, p. 166–187.
[77]
I. Foster, C. Kesselman.
The Grid, blueprint for a new computing infrastructure, Morgan Kaufmann Publishers, Inc., 1998.
[78]
E. Frénod, E. Sonnendrücker.
Long time behavior of the Vlasov equation with a strong external magnetic field, in: Math. Models Methods Appl. Sci., 2000, vol. 10, no 4, p. 539–553.
[79]
E. Frénod, E. Sonnendrücker.
The finite Larmor radius approximation, in: SIAM J. Math. Anal., 2001, vol. 32, no 6, p. 1227–1247.
[80]
E. Frénod, E. Sonnendrücker.
Homogenization of the Vlasov equation and of the Vlasov-Poisson system with a strong external magnetic field, in: Asymptot. Anal., 1998, vol. 18, no 3-4, p. 193–213.
[81]
E. Garcia, S. Labrunie.
Régularité spatio-temporelle de la solution des équations de Maxwell dans des domaines non-convexes, in: C. R. Acad. Sci. Paris, série I, 2002, vol. 334, p. 293–298.
[82]
R. T. Glassey.
The Cauchy problem in kinetic theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996.
[83]
F. Golse, L. Saint-Raymond.
The Vlasov-Poisson system with strong magnetic field in quasineutral regime, in: Math. Models Methods Appl. Sci., 2003, vol. 13, no 5, p. 661–714.
[84]
M. Griebel, G. Zumbusch.
Hash based adaptive parallel multilevel methods with space-filling curves, 2000.
[85]
E. Horst, R. Hunze.
Weak solutions of the initial value problem for the unmodified nonlinear Vlasov equation, in: Math. Methods Appl. Sci., 1984, vol. 6, no 2, p. 262–279.
[86]
M. Parashar, J. C. Browne, C. Edwards, K. Klimkowski.
A common data management infrastructure for adaptive algorithms for PDE solutions, 1997.
[87]
L. Saint-Raymond.
The gyrokinetic approximation for the Vlasov-Poisson system, in: Math. Models Methods Appl. Sci., 2000, vol. 10, no 9, p. 1305–1332.
[88]
E. Sonnendrücker, J.-R. Roche, P. Bertrand, A. Ghizzo.
The semi-Lagrangian method for the numerical resolution of the Vlasov equation, in: J. Comput. Phys., 1999, vol. 149, no 2, p. 201–220.
[89]
E. Violard.
A Semantic Framework To Adress Data Locality in Data Parallel Programs, in: Parallel Computing, 2004, vol. 30, no 1, p. 139–161.

previous
next