Team Bang

Members
Overall Objectives
Scientific Foundations
Application Domains
Software
New Results
Other Grants and Activities
Dissemination
Bibliography

Bibliography

Major publications by the team in recent years

[1]
B. Perthame.
Transport equations in biology, Birkhäuser Verlag, 2007, Frontiers in Mathematics.

Publications of the year

Doctoral Dissertations and Habilitation Theses

[2]
T. Lepoutre.
Analyse et modélisation de phénomènes de croissance et mouvement issus de la biologie, Université Pierre et Marie Curie, november 2009, Ph. D. Thesis.
[3]
S. Tumuluri.
Age-structured nonlinear renewal equation, Université Pierre et Marie Curie, july 2009, Ph. D. Thesis.

Articles in International Peer-Reviewed Journal

[4]
E. Audusse, M.-O. Bristeau, B. Perthame, J. Sainte-Marie.
A multilayer Saint-Venant system with mass exchanges for Shallow Water flowS. Derivation and Numerical Validation, in: M2AN, 2010
http://arxiv.org/abs/0901.3887.
[5]
M. Bendahmane, T. Lepoutre, A. Marrocco, B. Perthame.
Conservative cross diffusions and pattern formation through relaxation, in: Journal de Mathématiques Pures et Appliquées, december 2009, vol. 92, no 6, p. 651–667
http://www.sciencedirect.com/science/article/B6VMD-4WD1C3K-1/2/ca28b3816376790bee1a483dff3b38be.
[6]
H. Berestycki, G. Nadin, B. Perthame, L. Ryzhik.
The non-local Fisher-KPP equation: traveling waves and steady states, in: Nonlinearity, 2010, to appear.
[7]
H. Byrne, D. Drasdo.
Individual-based and continuum models of growing cell populations: a comparison, in: J. Math. Biol., 2009, vol. 58, no 4-5, p. 657–687.
[8]
V. Calvez, N. Lenuzza, M. Doumic, J.-P. Deslys, F. Mouthon, B. Perthame.
Prion dynamics with size dependency - strain phenomena, in: J. Biological Dynamics, 2009, vol. 4, no 1, p. 28–42.
[9]
V. Calvez, N. Lenuzza, D. Oelz, J.-P. Deslys, P. Laurent, F. Mouthon, B. Perthame.
Size distribution dependence of prion aggregates infectivity, in: Math. Biosciences, 2009, vol. 217, p. 88–99.
[10]
J. Clairambault.
Modelling physiological and pharmacological control on cell proliferation to optimise cancer treatments, in: Mathematical Modelling of Natural Phenomena, 2009, vol. 4, no 3, p. 183–209, Published online, June 2009.
[11]
J. Clairambault, S. Gaubert, T. Lepoutre.
Comparison of Perron and Floquet eigenvalues in age structured cell division cycle models, in: Mathematical Modelling of Natural Phenomena, 2009, vol. 4, no 3, p. 12–67, Published online, June 2009.
[12]
J. Clairambault, S. Gaubert, T. Lepoutre.
Circadian rhythm and cell population growth, in: Mathematical and Computer Modelling, 2010, to appear.
[13]
A.-L. Dalibard, B. Perthame.
Existence of solutions of the hyperbolic Keller-Segel model, in: Trans. AMS, 2009, vol. 361, no 5, p. 2319–2335.
[14]
A. Decoene, J.-F. Gerbeau.
Sigma transformation and ALE formulation for three-dimensional free surface flows, in: Internat. J. Numer. Methods Fluids, 2009, vol. 59, no 4, p. 357–386.
[15]
M. Doumic.
Boundary Value Problem for an Oblique Paraxial Model of Light Propagation, March 2009, vol. 16, no 1, p. 119–138.
[16]
M. Doumic, F. Duboc, F. Golse, R. Sentis.
Simulation of laser beam propagation with a paraxial model in a tilted frame, in: Journal of Computational Physics, february 2009, vol. 228, no 3, p. 861–880.
[17]
M. Doumic, P. Gabriel.
Eigenelements of a general aggregation-fragmentation model, in: M3AS, 2010, to appear.
[18]
M. Doumic, T. Goudon, T. Lepoutre.
Scaling limit of a discrete prion dynamics model, in: Communication in Mathematical Sciences, 2010, to appear.
[19]
M. Doumic, P. Kim, B. Perthame.
Stability analysis of a simplified yet complete model for chronic myelegeneous leukemia, in: Bull. of Math. Biol., 2010, to appear.
[20]
M. Doumic, B. Perthame, J. Zubelli.
Numerical Solution of an Inverse Problem in Size-Structured Population Dynamics, in: Inverse Problems, april 2009, vol. 25, no 4.
[21]
P. Gabriel.
Shape of the polymerization rate in the prion equation, in: Mathematical and Computer Modelling, 2010, to appear.
[22]
N. Goutal, J. Sainte-Marie.
A kinetic interpretation of the section-averaged Saint-Venant system for natural river hydraulics, in: International Journal for Numerical Methods in Fluids, 2010, to appear.
[23]
S. Höhme, D. Drasdo.
Biomechanical versus nutrient control: what determines the growth dynamics of mammalian cell population?, in: Mathematical Population Studies, 2009, accepted.
[24]
A. Krinner, M. Zscharnack, A. Bader, D. Drasdo, J. Galle.
The impact of the oxygen environment on mesenchyma stem cell expansion and chondrogenic differentiation, in: Cell Proliferation, 2009, vol. 42, p. 471–484, published online.
[25]
P. Laurençot, B. Perthame.
Exponential decay for the growth-fragmentation/cell-division equation, in: Comm. Math. Sci., 2009, vol. 7, no 2, p. 503–510.
[26]
F. Lévi, A. Okyar, S. Dulong, P. Innominato, J. Clairambault.
Circadian Timing in Cancer Treatments, in: Annual Review of Pharmacology and Toxicology, 2010, vol. 50, to appear.
[27]
A. Marrocco, H. Henry, I. Holland, M. Plapp, S. Seror, B. Perthame.
Models of self-organizing bacterial communities and comparisons with experimental observations, in: Math. Model. Nat. Phenom., 2010, to appear.
[28]
M. Radszuweit, M. Block, J. Hengstler, E. Schoell, D. Drasdo.
Comparing the growth kinetics of cell populations in two and three dimensions, in: Phys. Rev. E, 2010, vol. 79, no 051907.
[29]
I. Ramis-Conde, M. Chaplain, A. Anderson, D. Drasdo.
Multi-scale modelling of cell intravasation: role of cadherins in metastasis, in: Phys. Biol., 2009, vol. 6, no 1, p. 16008-16020.
[30]
J. Sainte-Marie.
Vertically Averaged Models for the Free Surface Euler System. Derivation and Kinetic Interpretation., in: Mathematical Models and Methods in Applied Sciences, 2010, to appear.
[31]
P. Souganidis, B. Perthame.
Asymmetric potentials and motor effect: an homogeneisation approach, in: Ann. IHP, Anal. Non Linéaire, 2009, vol. AN 26, no 6, p. 2055–2071.
[32]
P. Souganidis, B. Perthame.
Asymmetric potentials and motor effects: a large deviation approach, in: ARMA, 2009, vol. 193, no 1, p. 153–163.
[33]
J.-L. Steimer, S. G. Dahl, D. De Alwis, U. Gundert-Remy, M. Karlsson, J. Martinkova, L. Aarons, H.-J. Ahr, J. Clairambault, G. Freyer, L. Friberg, W.-D. Ludwig, G. De Nicolao, M. Rocchetti, I. F. Troconiz.
Modelling the genesis and treatment of cancer: the potential role of physiologically-based pharmacodynamics, in: European Journal of Cancer, 2009, Published online, December 2009, DOI:10.1016/j.ejca.2009.10.011.

International Peer-Reviewed Conference/Proceedings

[34]
M. Doumic, P. Maia, J. Zubelli.
On the calibration of a size-structured population model from experimental data, in: ECMTB2008 Proceedings, 2010, to appear.
[35]
J. Galle, A. Krinner, P. Buske, D. Drasdo, M. Loeffler.
On the impact of single cell biomechanics on the spatio-temporal organization of regenerative tissue, in: World Congress on Medical Physics and Biomedical Engineering, 2009, accepted.

Scientific Books (or Scientific Book chapters)

[36]
D. Drasdo, N. Jagiella, I. Ramis-Conde, I. Vignon-Clémentel, W. Weens.
Modeling steps from a benign tumor to an invasive cancer: examples of intrinsically multi-scale problems, in: From single scale-based models to multiscale modeling, Eds. Chauvière, A. and Preziozi, L. and Verdier, C., 2009.

References in notes

[37]
E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein, B. Perthame.
A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows, in: SIAM J. Sc. Comp., 2004, vol. 25, no 6, p. 2050-2065.
[38]
E. Audusse, M.-O. Bristeau.
A well-balanced positivity preserving second-order scheme for shallow water flows on unstructured meshes, in: J. Comp. Phys., 2005, vol. 206, p. 311-333.
[39]
E. Audusse, M.-O. Bristeau, A. Decoene.
Numerical simulations of 3D free surface flows by a multilayer Saint-Venant model, in: International Journal for Numerical Methods in Fluids, 2008, vol. 56, p. 331-350, doi:10.1002/fld.1534.
[40]
M. Block, E. Schoell, D. Drasdo.
Classifying the growth kinetics and surface dynamics in growing cell populations, in: Phys. Rev. Lett., 2008, vol. 99, no 24, p. 248101–104.
[41]
M.-O. Bristeau, J. Sainte-Marie.
Derivation of a non-hydrostatic shallow water model; Comparison with Saint-Venant and Boussinesq systems, in: Discrete Contin. Dyn. Syst. Ser. B, 2008, vol. 10, no 4, p. 733-759.
[42]
A. Decoene.
Modèle hydrostatique pour les écoulements à surface libre tridimensionnels et schémas numériques, Université Pierre et Marie Curie, Paris 6, May 2006, Ph. D. Thesis.
[43]
Y. Dolak, C. Schmeiser.
Kinetic models for chemotaxis: hydrodynamic limits and spatio-temporal mechanisms, in: J. Math. Biol., 2006, vol. 51, p. 595–615.
[44]
D. Drasdo.
Coarse Graining in Simulated Cell Populations, in: Adv. Complex Syst., 2005, vol. 2 & 3, p. 319–363.
[45]
D. Drasdo, S. Höhme, M. Block.
On the Role of Physics in the Growth and Pattern Formation of Multi-Cellular Systems: What can we Learn from Individual-Cell Based Models?, in: Journal of Statistical Physics, 2007, vol. 128, no 1-2, p. 287–345.
[46]
D. Drasdo, S. Höhme.
A single-cell-based model of tumor growth in vitro: monolayers and spheroids, in: Phys. Biol., 2005, vol. 2, p. 133–147.
[47]
D. Drasdo, M. Kruspe.
Emergence of regulatory networks in simulated evolutionary processes, in: Adv. Complex Syst., 2005, vol. 2 & 3, p. 285–318.
[48]
J. Galle, M. Loeffler, D. Drasdo.
Modelling the effect of deregulated proliferation and apoptosis on the growth dynamics of epithelial cell populations in vitro, in: Biophys. J., 2005, vol. 88, p. 62–75.
[49]
J.-F. Gerbeau, B. Perthame.
Derivation of Viscous Saint-Venant System for Laminar Shallow Water; Numerical Validation, in: Discrete and Continuous Dynamical Systems, Ser. B, 2001, vol. 1, no 1, p. 89-102.
[50]
S. Höhme, J.G. Hengstler, M. Brulport, A. Bauer, D. Drasdo.
Towards modeling liver lobule regeneration in 3D, in: Proceedings of the Fifth International Workshop on Computational Systems Biology, Leipzig, 2008, p. 61–64.
[51]
S. Höhme, J. Hengstler, M. Brulport, M. Schäfer, A. Bauer, R. Gebhardt, D. Drasdo.
Mathematical modelling of liver regeneration after intoxication with CC14, in: Chemico-Biological Interaction, 2007, vol. 168, p. 74–93.
[52]
K. Missal, M. Cross, D. Drasdo.
Reverse engineering of gene regulatory networks for incomplete expression data: Transciptional control of haemopoietic commitment, in: Bioinformatics, 2006, vol. 22, p. 731–738.
[53]
H. Özbay, C. Bonnet, J. Clairambault.
Stability analysis of systems with distributed delays and application to hematopoietic cell maturation dynamics, in: 47th IEEE Conference on Decision and Control, Cancun, Mexico, December 2008.
[54]
I. Ramis-Conde, M.A.J. Chaplain, A.R.A. Anderson, D. Drasdo.
Modelling the influence of E-cadherin-$ \beta$ -catenin pathway in cancer cell invasion: A multi-scale approach, in: Biophys., 2008, vol. 95, p. 155-165.
[55]
M. Rohrschneider, G. Scheuermann, S. Höhme, D. Drasdo.
Shape Characterization of Extracted and Simulated Tumor Samples using Topological and Geometric Measures, in: IEEE Engineering in Medicine and Biology Conference 2007, 2007, p. 6271–6277.

previous
next