Team Arénaire

Members
Overall Objectives
Scientific Foundations
Application Domains
Software
New Results
Contracts and Grants with Industry
Other Grants and Activities
Dissemination
Bibliography

Bibliography

Major publications by the team in recent years

[1]
A. Bostan, C.-P. Jeannerod, É. Schost.
Solving structured linear systems with large displacement rank, in: Theoretical Computer Science, November 2008, vol. 407, no 1:3, p. 155–181.
[2]
N. Brisebarre, J.-M. Muller, A. Tisserand.
Computing machine-efficient polynomial approximations, in: ACM Transactions on Mathematical Software, June 2006, vol. 32, no 2, p. 236–256.
[3]
F. de Dinechin, C. Q. Lauter, J.-M. Muller.
Fast and correctly rounded logarithms in double-precision, in: Theoretical Informatics and Applications, 2007, vol. 41, p. 85-102.
[4]
J. Detrey, F. de Dinechin.
Parameterized floating-point logarithm and exponential functions for FPGAs, in: Microprocessors and Microsystems, Special Issue on FPGA-based Reconfigurable Computing, December 2007, vol. 31, no 8, p. 537–545
http://dx.doi.org/10.1016/j.micpro.2006.02.008.
[5]
G. Hanrot, V. Lefèvre, D. Stehlé, P. Zimmermann.
Worst Cases of a Periodic Function for Large Arguments, in: Proceedings of the 18th IEEE Symposium on Computer Arithmetic (ARITH-18), IEEE computer society, 2007, p. 133–140
http://ieeexplore.ieee.org/search/wrapper.jsp?arnumber=4272859.
[6]
G. Hanrot, D. Stehlé.
Improved Analysis of Kannan's Shortest Lattice Vector Algorithm (Extended Abstract), in: Proceedings of Crypto 2007, LNCS, Springer, 2007, vol. 4622, p. 170–186.
[7]
C.-P. Jeannerod, G. Villard.
Essentially optimal computation of the inverse of generic polynomial matrices, in: Journal of Complexity, 2005, vol. 21, no 1, p. 72–86.
[8]
P. Kornerup, C. Q. Lauter, V. Lefèvre, N. Louvet, J.-M. Muller.
Computing Correctly Rounded Integer Powers in Floating-Point Arithmetic, in: ACM Transactions on Mathematical Software, 2009, vol. 37, no 1, To appear.
[9]
J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre, G. Melquiond, N. Revol, D. Stehlé, S. Torres.
Handbook of Floating-Point Arithmetic, Birkhäuser Boston, December 2009
http://prunel.ccsd.cnrs.fr/ensl-00379167/en/, ISBN: 978-0-8176-4704-9.
[10]
N. Revol, K. Makino, M. Berz.
Taylor models and floating-point arithmetic: proof that arithmetic operations are validated in COSY, in: Journal of Logic and Algebraic Programming, 2005, vol. 64, p. 135–154.

Publications of the year

Doctoral Dissertations and Habilitation Theses

[11]
S. Chevillard.
Évaluation efficace de fonctions numériques - Outils et exemples, École Normale Supérieure de Lyon, France, July 2009, Ph. D. Thesis.
[12]
G. Revy.
Implementation of binary floating-point arithmetic on integer processors: polynomial evaluation-based algorithms and certified code generation, Université de Lyon - École normale supérieure de Lyon, France, December 2009, Ph. D. Thesis.

Articles in International Peer-Reviewed Journal

[13]
S. Chevillard.
The functions erf and erfc computed with arbitrary precision, in: Information and Computation, 2010
http://prunel.ccsd.cnrs.fr/ensl-00356709, accepted with the status major revision.
[14]
M. Ercegovac, J.-M. Muller.
An Efficient Method for Evaluating Complex Polynomials, in: Journal of Signal Processing Systems, 2010, vol. 58, no 1, p. 17–27.
[15]
S. Graillat, J.-L. Lamotte, H. D. Nguyen.
Extended precision with a rounding mode toward zero environment. Application on the CELL processor, in: International Journal of Reliability and Safety, 2009, vol. 3, no 1/2/3, p. 153–173, Special issue on "Reliable Engineering Computing".
[16]
S. Graillat, Ph. Langlois, N. Louvet.
Algorithms for Accurate, Validated and Fast Polynomial Evaluation, in: Japan Journal of Industrial and Applied Mathematics, 2010, To appear.
[17]
P. Kornerup, C. Q. Lauter, V. Lefèvre, N. Louvet, J.-M. Muller.
Computing Correctly Rounded Integer Powers in Floating-Point Arithmetic, in: ACM Transactions on Mathematical Software, 2010, vol. 37, no 1, To appear.
[18]
C. Q. Lauter, V. Lefèvre.
An efficient rounding boundary test for pow(x,y) in double precision, in: IEEE Transactions on Computers, February 2009, vol. 58, no 2, p. 197–207
http://doi.ieeecomputersociety.org/10.1109/TC.2008.202.
[19]
P. Q. Nguyen, D. Stehlé.
An LLL Algorithm with Quadratic Complexity, in: SIAM Journal on Computing, 2009, vol. 39, no 3, p. 874–903.
[20]
P. Q. Nguyen, D. Stehlé.
Low-dimensional lattice basis reduction revisited, in: ACM Transactions on Algorithms, 2009
http://hal.inria.fr/inria-00328629/en/.

Articles in National Peer-Reviewed Journal

[21]
I. Morel, D. Stehlé, G. Villard.
Analyse numérique et réduction des réseaux, in: Technique et Science Informatiques, 2010, To appear.

International Peer-Reviewed Conference/Proceedings

[22]
S. Chevillard, M. Joldes, C. Q. Lauter.
Certified and fast computation of supremum norms of approximation errors, in: 19th IEEE Symposium on Computer Arithmetic (ARITH-19), Portland, Oregon, U.S.A., 2009, p. 169–176
http://prunel.ccsd.cnrs.fr/ensl-00334545/.
[23]
F. de Dinechin, C. Klein, B. Pasca.
Generating high-performance custom floating-point pipelines, in: Proceedings of the 19th International Conference on Field Programmable Logic and Applications, IEEE, August 2009
http://prunel.ccsd.cnrs.fr/ensl-00379154/en/, 6 pages.
[24]
F. de Dinechin, B. Pasca.
Large multipliers with less DSP blocks, in: Proceedings of the 19th International Conference on Field Programmable Logic and Applications, IEEE, August 2009
http://prunel.ccsd.cnrs.fr/ensl-00356421/en/, 9 pages.
[25]
P. Dormiani, M. Ercegovac, J.-M. Muller.
Design and Implementation of a Radix-4 Complex Division Unit with Prescaling, in: Proceedings of the 20th IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP 2009), Boston, U.S.A., IEEE Computer Society, 2009
http://prunel.ccsd.cnrs.fr/ensl-00379147/en/, 9 pages.
[26]
P. Dormiani, M. Ercegovac, J.-M. Muller.
Low Precision Table Based Complex Reciprocal Approximation, in: Proceedings of the 43rd Asilomar Conference on signals, systems and computers, Pacific Grove, California, USA, November 2009, 5 pages.
[27]
S. Graillat, J.-L. Lamotte, H. D. Nguyen.
Error-Free Transformation in rounding mode toward zero, in: Dagstuhl Seminar on Numerical Validation in Current Hardware Architectures, Lecture Notes in Computer Science, 2009, vol. 5492, p. 217–229.
[28]
C.-P. Jeannerod, H. Knochel, C. Monat, G. Revy, G. Villard.
A new binary floating-point division algorithm and its software implementation on the ST231 processor, in: Proceedings of the 19th IEEE Symposium on Computer Arithmetic (ARITH-19), Portland, OR, June 2009, p. 95–103.
[29]
C.-P. Jeannerod, G. Revy.
Optimizing correctly-rounded reciprocal square roots for embedded VLIW cores, in: Proceedings of the 43rd Asilomar Conference on signals, systems and computers, Pacific Grove, California, USA, November 2009, 5 pages.
[30]
R. B. Kearfott, J. D. Pryce, N. Revol.
Discussions on an Interval Arithmetic Standard at Dagstuhl Seminar 08021, in: Dagstuhl Seminar on Numerical Validation in Current Hardware Architectures, Lecture Notes in Computer Science, 2009, vol. 5492, p. 1–6.
[31]
P. Kornerup, V. Lefèvre, N. Louvet, J.-M. Muller.
On the Computation of Correctly-Rounded Sums, in: 19th IEEE Symposium on Computer Arithmetic (ARITH-19), Portland, Oregon, U.S.A., 2009, p. 155-160
http://hal.inria.fr/inria-00367584/en/.
[32]
I. Morel, D. Stehlé, G. Villard.
H-LLL: Using Householder inside LLL, in: Proc. International Symposium on Symbolic and Algebraic Computation (ISSAC 2009), Seould, Korea, ACM Press, August 2009, p. 271–278.
[33]
D. Stehlé, R. Steinfeld, K. Tanaka, K. Xagawa.
Efficient Public-Key Encryption Based on Ideal Lattices (extended abstract), in: Proceedings of Asiacrypt 2009, Lecture Notes in Computer Science, Springer-Verlag, 2009, vol. 5912, p. 617–635
http://dx.doi.org/10.1007/978-3-642-10366-7_36.

National Peer-Reviewed Conference/Proceedings

[34]
F. de Dinechin, M. Joldes, B. Pasca, G. Revy.
Racines carrées multiplicatives sur FPGA, in: 13 e SYMPosium en Architectures nouvelles de machines (SYMPA), Toulouse, September 2009, 10 pages.

Workshops without Proceedings

[35]
H. D. Nguyen, N. Revol.
Relaxed method to certify the solution of a linear system, in: SWIM'09 (Small Workshop on Interval Methods ), Lausanne, Switzerland, June 2009.

Scientific Books (or Scientific Book chapters)

[36]
J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre, G. Melquiond, N. Revol, D. Stehlé, S. Torres.
Handbook of Floating-Point Arithmetic, Birkhäuser Boston, 2009
http://prunel.ccsd.cnrs.fr/ensl-00379167/en/, ACM G.1.0; G.1.2; G.4; B.2.0; B.2.4; F.2.1., ISBN 978-0-8176-4704-9.
[37]
D. Stehlé.
Floating-point LLL: theoretical and practical aspects, Information Security and Cryptography, Springer, 2009.

Books or Proceedings Editing

[38]
P. Kornerup, P. Montuschi, J.-M. Muller, E. Schwarz (editors)
Special Section on Computer Arithmetic, IEEE Transactions on Computers, February 2009, vol. 58, no 2
http://prunel.ccsd.cnrs.fr/ensl-00383561/en/.

Internal Reports

[39]
S. Boldo, J.-M. Muller.
Exact and Approximated error of the FMA, INRIA, 2009
http://hal.archives-ouvertes.fr/inria-00429617/en/, Soumis à IEEE-TC.
[40]
S. Chevillard.
The functions erf and erfc computed with arbitrary precision, Laboratoire de l'Informatique du Parallélisme (LIP), 46, allée d'Italie, 69 364 Lyon Cedex 07, January 2009, no RR2009-04
http://prunel.ccsd.cnrs.fr/ensl-00356709, Research report.
[41]
S. Chevillard, J. Harrison, M. Joldes, C. Q. Lauter.
Efficient and accurate computation of upper bounds of approximation error s, Laboratoire de l'Informatique du Parallélisme (LIP), 46, allée d'Italie, 69 364 Lyon Cedex 07, December 2009, no RR2009-, Research report.
[42]
C.-P. Jeannerod, N. Louvet, J.-M. Muller, A. Panhaleux.
Midpoints and exact points of some algebraic functions in floating-point arithmetic, LIP, École Normale Supérieure de Lyon, 2009, no ensl-00409366
http://prunel.ccsd.cnrs.fr/ensl-00409366, Research report.

Scientific Popularization

[43]
V. Lefèvre, J.-M. Muller.
Erreurs en arithmétique des ordinateurs, in: Images des mathématiques, June 2009
http://images.math.cnrs.fr/Erreurs-en-arithmetique-des.html.

Other Publications

[44]
X.-W. Chang, D. Stehlé, G. Villard.
Perturbation Analysis of the QR factor R in the Context of LLL Lattice Basis Reduction, 2009, Submitted.
[45]
K. R. Ghazi, V. Lefèvre, P. Théveny, P. Zimmermann.
Why and how to use arbitrary precision, 2009, Submitted to Computing in Science and Engineering.
[46]
C.-P. Jeannerod, H. Knochel, C. Monat, G. Revy.
Computing floating-point square roots via bivariate polynomial evaluation, 2009, Submitted.
[47]
C.-P. Jeannerod, C. Mouilleron, G. Villard.
Extending Cardinal's algorithm to a broader class of structured matrices, July 2009, Poster at ISSAC 2009.
[48]
J.-M. Muller.
Exact computations with an arithmetic known to be approximate, 2009, Invited lectures (3 hours) at the conference Numeration: Mathematics and Computer Science, CIRM, Marseille, Mar. 2009.
[49]
H. D. Nguyen, N. Revol.
Solving and Certifying a Linear System, 2009, Submitted to Reliable Computing.
[50]
X. Pujol, D. Stehlé.
Solving the Shortest Lattice Vector Problem in Time 22.465n , 2009
http://eprint.iacr.org/2009/605, IACR eprint.
[51]
M. van Hoeij, A. Novocin.
Gradual sub-lattice reduction and a new complexity for factoring polynomials, 2010, To appear in the proceedings of LATIN'10.

References in notes

[52]
F. de Dinechin, A. Tisserand.
Multipartite table methods, in: IEEE Transactions on Computers, 2005, vol. 54, no 3, p. 319-330.
[53]
T. J. Hickey, Q. Ju, M. H. van Emden.
Interval arithmetic: From principles to implementation, in: Journal of the ACM, 2001, vol. 48, no 5, p. 1038-1068
http://doi.acm.org/10.1145/502102.502106.
[54]
E. Kaltofen, G. Villard.
On the complexity of computing determinants, in: Computational Complexity, 2004, vol. 13, p. 91–130.
[55]
J.-M. Muller.
Elementary Functions, Algorithms and Implementation, Birkhäuser Boston, 2nd Edition, 2006.

previous
next