Team ANUBIS

Members
Overall Objectives
Scientific Foundations
New Results
Contracts and Grants with Industry
Other Grants and Activities
Dissemination
Bibliography

Bibliography

Major publications by the team in recent years

[1]
M. Adimy, F. Crauste, A. Halanay, M. Neamţu, D. Opriş.
Stability of limit cycles in a pluripotent stem cell dynamics model, in: Chaos, Solitons and Fractals, 2006, vol. 27, no 4, p. 1091–1107.
[2]
B. Ainseba.
Age-dependent population dynamics diffusive systems, in: Discrete and Continuous Dynamical Systems- Series B, 2004, vol. 4, no 4, p. 1233–1247.
[3]
B. Ainseba, S. Anita, M. Langlais.
Internal stabilizability of some diffusive models, in: Journal of Mathematical Analysis and Applications, 2002, vol. 265, p. 91–102.
[4]
B. Ainseba, F. Heiser, M. Langlais.
A mathematical analysis of a predator-prey system in a highly heterogeneous environment, in: Differential and Integral Equations, 2002, vol. 15, no 4, p. 385-404.
[5]
B. Ainseba, A. Noussair.
Existence and uniqueness of a character dependence and spatial structure population dynamics kinetic model, in: J. of Differential Equations, 2003, vol. 187, p. 293–309.
[6]
K. Berthier, M. Langlais, P. Auger, D. Pontier.
Dynamics of a feline virus with two transmission modes within exponentially growing host populations, in: Proc. R. Soc. London, série B, 2000, vol. 267, p. 2049–2056.
[7]
J.-B. Burie, A. Calonnec, M. Langlais.
Modeling of the Invasion of a fungal Disease over a vineyard, in: Mathematical Modeling of Biological Systems, volume II, Birkhauser, 2008, p. 12-24
http://hal.archives-ouvertes.fr/hal-00200728/en/.
[8]
F. Courchamp, M. Langlais, G. Sugihara.
Control of rabbits to protect island birds from cat predation, in: Journal of Biological Conservation, 1999, vol. 89, p. 219–225.
[9]
W. Fitzgibbon, M. Langlais.
Weakly coupled hyperbolic systems modeling the circulation of infectious disease in structured populations, in: Math. Biosciences, 2000, vol. 165, p. 79–95.
[10]
W. Fitzgibbon, M. Langlais, J. Morgan.
A reaction-diffusion system modeling direct and indirect transmission of a disease, in: DCDS B, 2004, vol. 4, p. 893–910.
[11]
W. Fitzgibbon, M. Langlais, J. Morgan.
A Reaction-Diffusion system on non coincident spatial domains modeling the circulation of a disease between two host populations, in: Differential and Integral Equations, 2004, vol. 17, p. 781–802.
[12]
W. Fitzgibbon, M. Langlais, J. Morgan.
Eventually uniform bounds for a class of quasipositive Reaction Diffusion systems, in: Japan J. Ind. Appl. Math., 1999, vol. 16, p. 225–241.
[13]
S. Gaucel, M. Langlais, D. Pontier.
Invading introduced species in insular heterogeneous environments, in: Ecological Modeling, 2005, vol. 18, p. 62-75.
[14]
J. Henry.
For which objective is birth process an optimal feedback in age structured population dynamics?, in: Discrete and Continuous Dynamical systems B, 2007, vol. 8, no 1, p. 107-114.
[15]
J. Henry, A. Ramos.
Factorization of second order elliptic boundary value problems by dynamic programming, in: Nonlinear Analysis, 2004, no 59, p. 629–647.
[16]
M. Langlais, F. Milner.
Existence and uniqueness of solutions for a diffusion model of host-parasite dynamics, in: J. Math. Anal. and Applications, 2003, vol. 279, p. 463–474.

Publications of the year

Doctoral Dissertations and Habilitation Theses

[17]
D. Picart.
Modélisation et estimation des paramètres liés au succès reproducteur d'un ravageur de la vigne (Lobesia botrana DEN. & SCHIFF.), Université Sciences et Technologies - Bordeaux I, 02 2009
http://tel.archives-ouvertes.fr/tel-00405686/en/, Ph. D. Thesis.
[18]
P. Zongo.
Modélisation mathématique de la dynamique de la transmission du paludisme, université de Ouagadougou, 05 2009
http://tel.archives-ouvertes.fr/tel-00419519/en/, Ph. D. Thesis.

Articles in International Peer-Reviewed Journal

[19]
B. Ainseba, C. Benosman, P. Magal.
A model for ovine brucellosis incorporating direct and indirect transmission, in: Journal Biological Dynamics, 2009, p. TJBD-2009-0014.R1
http://hal.archives-ouvertes.fr/hal-00402178/en/.
[20]
S. Anita, W. Fitzgibbon, M. Langlais.
Global Existence and internal stabilization for a reaction-diffusion system posed on non coincident spatial domains, in: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS SERIES B, 2009-06-01, vol. 11, p. 805-822
http://hal.archives-ouvertes.fr/hal-00372932/en/.
[21]
S. Anita, M. Langlais.
Stabilization strategies for some reaction-diffusion systems, in: Nonlinear Analysis Series: Real World Applications, 2009, vol. 10, p. 345-357
http://hal.archives-ouvertes.fr/hal-00269161/en/.
[22]
N. Apreutesei, A. Ducrot, V. Volpert.
Travelling Waves for Integro-differential Equations, in: Discrete and Continuous Dynamical Systems: Series B, 2009, p. 541–561
http://hal.archives-ouvertes.fr/hal-00385530/en/.
[23]
B. Aylaj, A. Noussair.
Trajectory analysis of nonlinear kinetic models of population dynamics of several species, in: Mathematical and Computer Modelling, 2009-06-01, vol. 11-12, p. 2094-2103
http://hal.archives-ouvertes.fr/hal-00391769/en/.
[24]
B. Aylaj, A. Noussair.
Global weak solution for a multi-stage physiologically structured population model with resource interaction, in: Nonlinear Analysis: Real World Applications, 2009-03-27, in press p
http://hal.archives-ouvertes.fr/hal-00391753/en/.
[25]
A. Ben Abda, J. Henry, F. Jday.
Missing boundary data reconstruction by the factorization method, in: Comptes Rendus de l Académie des Sciences - Series I - Mathematics, 2009, vol. 347, p. 501-504
http://hal.inria.fr/inria-00387688/en/.
[26]
J. Burie, A. Ducrot.
Travelling wave solutions for some models in phytopathology, in: Nonlinear Analysis Real World Applications, 2009, vol. 10, p. 2307-2325
http://hal.archives-ouvertes.fr/hal-00293372/en/.
[27]
J. Chu, A. Ducrot, P. Magal, S. Ruan.
Hopf bifurcation in a size structured population dynamic model with random growth, in: Journal of Differential Equations, 2009, p. 1-45 DOI: 10.1016/j.jde.2009.04.003
http://hal.archives-ouvertes.fr/inria-00441241/en/.
[28]
A. Ducrot, P. Magal, S. Ruan.
Travelling Wave Solutions in Multigroup Age-Structured Epidemic Models, in: Archive for Rational Mechanics and Analysis, 2009, p. 1-21.
[29]
A. Ducrot, S. Sirima, B. Some, P. Zongo.
A mathematical model for malaria involving differential susceptibility, exposedness and infectivity of human host, in: Journal of Biological Dynamics, 2009, p. 1-25
http://hal.archives-ouvertes.fr/hal-00385593/en/.
[30]
A. Ducrot, P. Magal, K. Prevost.
Integrated semigroups and parabolic equations. Part I: linear perburbation of almost sectorial operators, in: Journal of Evolution Equations, 2009, p. 1-29
http://hal.archives-ouvertes.fr/hal-00445792/en/.
[31]
J. El Ghordaf, H. Hbid, E. Sanchez, M. Langlais.
On the evolution of spatially distributed urban populations: Modelling and mathematical analysis, in: Nonlinear Analysis Real World Applications, 2009, vol. 10, p. 2945-2960
http://hal.archives-ouvertes.fr/hal-00402160/en/.
[32]
F. Hilker, M. Langlais, H. Malchow.
The Allee Effect and Infectious Diseases: Extinction, Multistability, and the (Dis-)Appearance of Oscillations, in: The American Naturalist, 2009-01-05, vol. 173, p. 72-88
http://hal.archives-ouvertes.fr/hal-00372940/en/.
[33]
C. Kou, M. Adimy, A. Ducrot.
On the dynamics of an impulsive model of hematopoiesis, in: Mathematical Modelling of Natural Phenomena, 2009, p. 68-91
http://hal.archives-ouvertes.fr/hal-00402808/en/.
[34]
P. Magal, A. Ducrot.
Travelling wave solutions for an infection-age structured model with diffusion, in: Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 2009, vol. 139, p. 459-482
http://hal.inria.fr/inria-00441242/en/.
[35]
P. Magal, A. Ducrot, S. Ruan.
Travelling Wave Solutions in Multi-group Age- Structured Epidemic Models, in: Archive for Rational Mechanics and Analysis, 2010, vol. 195, 311–331 p
http://hal.inria.fr/inria-00441247/en/.

International Peer-Reviewed Conference/Proceedings

[36]
J. Henry, B. Louro, M. D. C. Soares.
Factorization by Invariant Embedding of a Boundary Value Problem for the Laplace Operator, in: System Modeling and Optimization 23rd IFIP TC 7 Conference, Cracow Pologne, A. Korytowski, K. Malanowski, W. Mitkowski, M. Szymkat (editors), Springer-Verlag;Springer (Kluwer Academic Publishers), 2010, p. pp 282-292
http://hal.inria.fr/inria-00441372/en/.

References in notes

[37]
M. Adimy, F. Crauste.
Global stability of a partial differential equation with distributed delay due to cellular replication, in: Nonlinear Analysis, 2003, vol. 54, no 8, p. 1469–1491.
[38]
M. Adimy, F. Crauste.
Un modèle non-linéaire de prolifération cellulaire : extinction des cellules et invariance, in: C. R. Acad. Sci. Paris, 2003, vol. 336, p. 559–564.
[39]
M. Adimy, F. Crauste.
Existence, positivity and stability for a nonlinear model of cellular proliferation, in: Nonlinear Analysis: Real World Applications, 2005, vol. 6, no 2, p. 337–366.
[40]
B. Ainseba, W. Fitzgibbon, M. Langlais, J. Morgan.
An application of homogenization techniques to population dynamics models, in: Communications on Pure and Applied Analysis, 2002, vol. 1, p. 19–33.
[41]
S. Anita.
Analysis and control of age-dependent population dynamics, Kluwer academic publisher, 2000.
[42]
M. Bendhamane, M. Langlais, M. Saad.
On some anisotropic reaction-diffusion systems with L1 -data modeling the propagation of an epidemic disease, in: Nonlinear Analysis, Series, Theory and Methods, 2003, vol. 54, p. 617–636.
[43]
K. Berthier, M. Langlais, P. Auger, D. Pontier.
Dynamics of a feline virus with two transmission modes within exponentially growing host populations, in: Proc. R. Soc. London, série B, 2000, vol. 267, p. 2049–2056.
[44]
C. Bouloux, M. Langlais, P. Silan.
A marine host-parasite model with direct biological cycle and age structure, in: Ecological Modeling, 1998, vol. 107, p. 73–86.
[45]
J.-B. Burie, A. Calonnec, A. Ducrot.
Singular Perturbation Analysis of travelling Waves for a Model in Phytopathology, in: Mathematical Modeling of Natural Phenomena, 2006, vol. 1.
[46]
W. Fitzgibbon, M. Langlais, F. Marpeau, J. Morgan.
Modeling the circulation of a disease between two host populations on non coincident spatial domains, in: Biol. Invasions, 2005, vol. 7, p. 863–875.
[47]
E. Fromont, M. Langlais, D. Pontier.
Effect of spatial heterogeneity at the inter-population scale on the dynamics of FeLV, in: J. Theoret. Biol., 2003, vol. 223, p. 465–475.
[48]
S. Gaucel, M. Langlais.
Finite time and global existence for solutions to some singular reaction-diffusion systems, in: Discrete Contin. Dyn. Syst. B, 2007, vol. 8, p. 61-72.
[49]
J. Henry, J.-P. Yvon.
On the use of space invariant embedding to solve optimal control problems for second order elliptic equations, in: System modeling and Optimization, Chapman and Hall, 1996, p. 195–202.
[50]
F. Hilker, M. Lewis, H. Seno, M. Langlais, H. Malchow.
Pathogens can slow down or reverse invasion fronts of their hosts, in: Biol. Invasions, 2005, vol. 7, p. 817–832.
[51]
M. Iannelli.
Mathematical Theory of Age-Structured Population Dynamics, Giardini Editori e Stampatori, Pisa, 1995.
[52]
J.-L. Lions.
Contrôle Optimal de Systèmes Gouvernés par des Équations aux Dérivées Partielles, Dunod, 1968.
[53]
M. C. Mackey, L. Glass.
From Clocks to Chaos: The Rhythms of Life, Princeton University Press, Princeton, 1988.
[54]
M. C. Mackey.
Unified hypothesis of the origin of aplastic anaemia and periodic hematopoïesis, in: Blood, 1978, vol. 51, p. 941–956.
[55]
J. Moreau, B. Benrey, D. Thiéry.
Grape variety affects larval performance and also female reproductive performance of the European grapevine moth, in: Bull. Entom. Research., 2006, vol. 96, no 2, p. 205-212.
[56]
M. Ouarit, J.-P. Yvon, J. Henry.
Optimal weighting design for distributed parameter system estimation, in: Optimal Control Applications and Methods, 2001, vol. 22, no 1, p. 37–49.
[57]
D. Pontier, F. Courchamp, E. Fromont, M. Langlais.
L'impact de la présence du chat sur les populations d'oiseaux insulaires est-il uniquement négatif ?, Institut Français de la Recherche et de la Technologie Polaire, 1999, Rapport d'activité.
[58]
S. Rubinow, J. Lebowitz.
A mathematical model of neutrophil production and control in normal man, in: J. Math. Biol., 1975, vol. 1, p. 187–225.
[59]
F. Sauvage, M. Langlais, D. Pontier.
Predicting the emergence of human hantavirus disease using a combination of viral dynamics and rodent demographic patterns, in: Epidemiology and Infection, 2007, vol. 136, p. 46–56.
[60]
C. Suppo, J.-M. Naulin, M. Langlais, M. Artois.
A modeling approach of vaccination and sterilization programms for rabies control in fox populations, in: Proc. R. Soc. London, série B, 2000, vol. 267, p. 1575–1582.
[61]
D. Thiéry, J. Moreau.
Relative performance of European grapevine mothb(Lobesia botrana) on grapes and other hosts, in: Oecologia, 2005, vol. 143, p. 548-557.
[62]
D. Thiéry, J. Moreau.
Grape cultivar affects larval and female fitness of the European grapevine moth, Lobesia botrana (Lepidoptera: tortricidae), in: Integrated protection in Viti., 2006, p. 131-138.
[63]
G. Webb.
Theory of age nonlinear population dynamics, Marcel Dekker, New York, 1985.
[64]
C. Wolf, F. Sauvage, D. Pontier, M. Langlais.
A multi–patch model with periodic demography for a bank vole - Hantavirus system with variable maturation rate, in: Math. Population Studies, 2006, vol. 13, no 3, p. 153–177.
[65]
C. Wolf.
A nonlinear and nonlocal mathematical problem modeling the propagation of a Hantavirus in structured bank vole populations, in: Discrete and Continuous Dynamical Systems, B, 2004, vol. 4, p. 1065–1089.

previous
next