Section: New Results
Bayesian Nonparametrics
Participants : François Caron, Arnaud Doucet, Christopher Holmes, Jim Griffin, Dave Stephens.
Bayesian Nonparametric Models on Decomposable Graphs
Over recent years Dirichlet processes and the associated Chinese restaurant process (CRP) have found many applications in clustering while the Indian buffet process (IBP) is increasingly used to describe latent feature models. These models are attractive because they ensure exchangeability (over samples). We propose here extensions of these models where the dependency between samples is given by a known decomposable graph. These models have appealing properties and can be easily learned using Markov Chain Monte Carlo and Sequential Monte Carlo techniques.
This work has been presented as an invited talk at the 7th workshop on Bayesian nonparametrics , Turin, Italy, and has been accepted at the NIPS international conference [8] .
Bayesian Nonparametric Models for two sample hypothesis testing
In this work [23] we describe Bayesian nonparametric procedures for
two-sample hypothesis testing. That is, given two sets of samples and
, with F(1), F(2) unknown, we wish to evaluate the evidence for the null hypothesis
verses the alternative
H1:F(1)
F(2) . Our method is based upon a nonparametric Polya
tree prior centered either a priori or empirically. We show that the Polya tree prior
allows us to calculate an analytic expression for the marginal likelihood
under the two hypotheses and hence provide an explicit measure of
.