Team Magique-3D

Members
Overall Objectives
Scientific Foundations
Application Domains
Software
New Results
Contracts and Grants with Industry
Other Grants and Activities
Dissemination
Bibliography

Bibliography

Major publications by the team in recent years

[1]
M. Amara, R. Djellouli, C. Farhat.
Convergence analysis of a discontinuous Galerkin method with plane waves and Lagrange multipliers for the solution of Helmholtz problems, in: to SIAM Journal on Numerical Analysis, In press, 2008.
[2]
H. Barucq, C. Bekkey, R. Djellouli.
Construction of local boundary conditions for an eigenvalue problem using micro-local analysis. Application to optical waveguide problem, in: J. Comp. Phys., 2004, vol. 193, no 2, p. 666-696.
[3]
H. Barucq, R. Djellouli, A.-G. Saint-Guirons.
Three-dimensional approximate local DtN boundary conditions for prolate spheroid boundaries, in: Journal of Computational and Applied Mathematics, 2008
http://hal.inria.fr/inria-00338506/en/.
[4]
H. Barucq, M. Fontes.
Well-posedness and exponential stability of Maxwell-like systems coupled with strongly absorbing layers, in: J. Math. Pures Appl. (9), 2007, vol. 87, no 3, p. 253–273.
[5]
J. Diaz, M. J. Grote.
Energy conserving explicit local time-stepping for second-order wave equations, in: SIAM Journal on Scientific Computing, in press, 2008.
[6]
A. Ezziani, P. Joly.
Local time stepping and discontinuous Galerkin methods for symmetric first order hyperbolic systems, in: Journal of Computational and Applied Mathematics, 2008
http://hal.inria.fr/inria-00339912/en/.
[7]
D. Komatitsch, J. Labarta, D. Michéa.
A simulation of seismic wave propagation at high resolution in the inner core of the Earth on 2166 processors of MareNostrum, in: Lecture Notes in Computer Science, 2008, vol. 5336, p. 364-377.
[8]
R. Martin, D. Komatitsch, C. Blitz, N. Le Goff.
Simulation of seismic wave propagation in an asteroid based upon an unstructured MPI spectral-element method: blocking and non-blocking communication strategies, in: Lecture notes in computer science, 2008
http://hal.inria.fr/inria-00339890/en/.
[9]
R. Martin, D. Komatitsch, A. Ezziani.
An unsplit convolutional Perfectly Matched Layer improved at grazing incidence for the seismic wave equation in poroelastic media, in: Geophysics, 2008, vol. 73, no 5, p. T51-T61.
[10]
R. Martin, R. Zenit.
Heat transfer resulting from the interaction of a vortex pair with a heated wall, in: Journal of Heat Transfer, 2008, vol. 130, 130 p.

Publications of the year

Doctoral Dissertations and Habilitation Theses

[11]
A.-G. Saint-Guirons.
Construction et analyse de conditions absorbantes de type Dirichlet-to-Neumann pour des frontières ellipsoïdales, Ph. D. Thesis, Université de Pau et des Pays de l'Adour, 2008.

Articles in International Peer-Reviewed Journal

[12]
M. Amara, R. Djellouli, C. Farhat.
Convergence analysis of a discontinuous Galerkin method with plane waves and Lagrange multipliers for the solution of Helmholtz problems, in: to SIAM Journal on Numerical Analysis, In press, 2008.
[13]
H. Barucq, R. Djellouli, A.-G. Saint-Guirons.
Performance assessment of a new class of local absorbing boundary conditions for elliptical- and prolate spheroidal-shaped boundaries, in: Applied Numerical Mathematics, 2008
http://hal.inria.fr/inria-00338494/en/.
[14]
H. Barucq, R. Djellouli, A.-G. Saint-Guirons.
Three-dimensional approximate local DtN boundary conditions for prolate spheroid boundaries, in: Journal of Computational and Applied Mathematics, 2008
http://hal.inria.fr/inria-00338506/en/.
[15]
J. Diaz, M. J. Grote.
Energy conserving explicit local time-stepping for second-order wave equations, in: SIAM Journal on Scientific Computing, in press, 2008.
[16]
L. Dubois, K. L. Feigl, D. Komatitsch, T. Árnadóttir, F. Sigmundsson.
Three-dimensional mechanical models for the June 2000 earthquake sequence in the south Iceland seismic zone, in: Tectonophysics, 2008, vol. 457, p. 12-29.
[17]
A. Ezziani, P. Joly.
Local time stepping and discontinuous Galerkin methods for symmetric first order hyperbolic systems, in: Journal of Computational and Applied Mathematics, 2008
http://hal.inria.fr/inria-00339912/en/.
[18]
L. Godinho, P. A. Mendes, A. Tadeu, A. Cadena-Isaza, C. Smerzini, F. J. Sánchez-Sesma, R. Madec, D. Komatitsch.
Numerical Simulation of Ground Rotations along 2D Topographical Profiles under the Incidence of Elastic Waves, in: Bull. Seismol. Soc. Am., in press., 2008.
[19]
D. Komatitsch.
“Comment on “Multidomain Pseudospectral Time-Domain (PSTD) method for acoustic waves in lossy media” by Y. Q. Zeng, Q. H. Liu and G. Zhao, Journal of Computational Acoustics, vol. 12, no. 3, pp 277-299 (2004)”, in: Journal of Computational Acoustics, 2008, vol. 16, p. 465-467
http://hal.inria.fr/inria-00340019/en/.
[20]
D. Komatitsch, J. Labarta, D. Michéa.
A simulation of seismic wave propagation at high resolution in the inner core of the Earth on 2166 processors of MareNostrum, in: Lecture Notes in Computer Science, 2008, vol. 5336, p. 364-377.
[21]
D. Komatitsch, D. Michéa, G. Erlebacher.
Porting a high-order finite-element earthquake modeling application to NVIDIA graphics cards using CUDA, in: Journal of Parallel and Distributed Computing, in press., 2008.
[22]
S. J. Lee, Y. C. Chan, D. Komatitsch, B. S. Huang, J. Tromp.
Effects of realistic surface topography on seismic ground motion in the Yangminshan region (Taiwan) based upon the Spectral-Element Method and LiDAR DTM, in: Bull. Seismol. Soc. Am., in press., 2008.
[23]
S. J. Lee, H. W. Chen, Q. Liu, D. Komatitsch, B. S. Huang, J. Tromp.
Three-Dimensional Simulations of Seismic Wave Propagation in the Taipei Basin with Realistic Topography Based upon the Spectral-Element Method, in: Bull. Seismol. Soc. Am., 2008, vol. 98, no 1, p. 253-264.
[24]
S. J. Lee, D. Komatitsch, B. S. Huang, J. Tromp.
Effects of surface topography on seismic wave propagation: An example from northern Taiwan, in: Bull. Seismol. Soc. Am., in press., 2008.
[25]
R. Martin, D. Komatitsch, C. Blitz, N. Le Goff.
Simulation of seismic wave propagation in an asteroid based upon an unstructured MPI spectral-element method: blocking and non-blocking communication strategies, in: Lecture notes in computer science, 2008
http://hal.inria.fr/inria-00339890/en/.
[26]
R. Martin, D. Komatitsch, C. Blitz, N. Le Goff.
Simulation of seismic wave propagation in an asteroid based upon an unstructured MPI spectral-element method: blocking and non-blocking communication strategies, in: Lecture Notes in Computer Science, in press., 2008.
[27]
R. Martin, D. Komatitsch, A. Ezziani.
An unsplit convolutional Perfectly Matched Layer improved at grazing incidence for the seismic wave equation in poroelastic media, in: Geophysics, 2008, vol. 73, no 5, p. T51-T61.
[28]
R. Martin, R. Zenit.
Heat transfer resulting from the interaction of a vortex pair with a heated wall, in: Journal of Heat Transfer, 2008, vol. 130, 130 p.
[29]
J. Tromp, D. Komatitsch, Q. Liu.
Spectral-Element and Adjoint Methods in Seismology, in: Communications in Computational Physics, 2008, vol. 3, no 1, p. 1-32.
[30]
S. Tsuboi, D. Komatitsch, C. Ji, J. Tromp.
Computations of global seismic wave propagation in three dimensional earth models, in: Lecture Notes in Computer Science, 2008, vol. 4759, p. 434-443.

International Peer-Reviewed Conference/Proceedings

[31]
M. Amara, H. Barucq, A. Bernardini, R. Djellouli.
A mixed-hybrid method for solving mid-and high-frequency Helmholtz problems, in: International Conference on Theoretical and Computational Acoustics Theoretical and Computational Acoustics 2007, Grèce Heraklion, P. P. Michael Taroudakis (editor), 2008.
[32]
H. Barucq, C. Baldassari, H. Calandra, B. Denel, J. Diaz.
The reverse time migration technique coupled with finite element methods, in: 5èmes journées du GDR Etude de la propagation ultrasononore en vue du contrôle non-destructif, 2-6 June 2008, In press, 2008.
[33]
H. Barucq, R. Djellouli, A.-G. Saint-Guirons.
TWO-DIMENSIONAL APPROXIMATE LOCAL DtN BOUNDARY CONDITIONS FOR ELLIPTICAL-SHAPED BOUNDARIES, in: International Conference on Theoretical and Computational Acoustics 2007, Grèce Heraklion, P. P. Michael Taroudakis (editor), 2008
http://hal.inria.fr/inria-00339926/en/.
[34]
L. Carington, D. Komatitsch, M. Laurenzano, M. Tikir, D. Michéa, N. Le Goff, A. Snavely, J. Tromp.
High-frequency simulations of global seismic wave propagation using SPECFEM3D_GLOBE on 62 thousand processor cores, in: Proceedings of the ACM/IEEE Supercomputing SC'2008 conference, Gordon Bell Prize finalist article, published on CD-ROM and online, 2008.
[35]
J. Diaz, P. Joly.
Application of Cagniard de Hoop Method to the Analysis of Perfectly Matched Layers, in: 3rd IFAC Workshop on Fractional Differentiation and its Applications, Ankara Turquie, 2008
http://hal.inria.fr/inria-00343016/en/.
[36]
G. Dupuy, B. Jobard, S. Guillon, N. Keskes, D. Komatitsch.
Isosurface extraction and interpretation on very large datasets in geophysics, in: ACM Solid and Physical Modeling Symposium, États-Unis d'Amérique New York, 2008
http://hal.inria.fr/inria-00277070/en/.

Internal Reports

[37]
H. Barucq, B. Duquet, F. Prat.
True amplitude one-way propagation in heterogeneous media, RR-6517, INRIA, 2008
http://hal.inria.fr/inria-00274885/en/.
[38]
J. Diaz, A. Ezziani.
Analytical Solution for Wave Propagation in Stratified Acoustic/Porous Media. Part I: the 2D Case, RR-6509, INRIA, 2008
http://hal.inria.fr/inria-00274136/en/.
[39]
J. Diaz, A. Ezziani.
Analytical Solution for Wave Propagation in Stratified Acoustic/Porous Media. Part II: the 3D Case, RR-6595, INRIA, 2008
http://hal.inria.fr/inria-00305884/en/.
[40]
J. Diaz, A. Ezziani.
Analytical Solution for Wave Propagation in Stratified Poroelastic Medium. Part I: the 2D Case, RR-6591, INRIA, 2008
http://hal.inria.fr/inria-00305395/en/.
[41]
J. Diaz, A. Ezziani.
Analytical Solution for Wave Propagation in Stratified Poroelastic Medium. Part II: the 3D Case, RR-6596, INRIA, 2008
http://hal.inria.fr/inria-00305891/en/.

Other Publications

[42]
H. Barucq, J. Diaz, M. Tlemcani.
New absorbing layers conditions for short water waves, submitted, 12 pages, 2008.
[43]
C. Bekkey, R. Djellouli, H. Barucq.
Acoustic far-field pattern reconstruction from limited measurements, submitted, 2008.
[44]
J. Diaz, A. Ezziani.
Analytical solution for waves propagation in heterogeneous acoustic/porous media. Part I: the 2D case, submitted, 26 pages, 2008.
[45]
J. Diaz, A. Ezziani.
Analytical solution for waves propagation in heterogeneous acoustic/porous media. Part II: the 3D case, submitted, 30 pages, 2008.
[46]
R. Martin, D. Komatitsch.
An unsplit convolutional Perfectly Matched Layer improved at grazing incidence for the viscoelastic wave equation, submitted, 10 pages, 2008.
[47]
R. Martin, C. Ortiz-Aleman.
Three-dimensional modelling for capacitance tomography using secondary potential formulation, submitted to Computer Science and Engineering, 2008.

References in notes

[48]
J. P. Bérenger.
A Perfectly Matched Layer for the absorption of electromagnetic waves, in: J. Comput. Phys., 1994, vol. 114, p. 185-200.
[49]
J. Bielak, P. Christiano.
On the effective seismic input for non-linear soil-structure interaction systems, in: Earthquake Eng. Struct. Dyn., 1984, vol. 12, p. 107-119.
[50]
C. Cerjan, D. Kosloff, R. Kosloff, M. Reshef.
A nonreflecting boundary condition for discrete acoustic and elastic wave equation, in: Geophysics, 1985, vol. 50, p. 705-708.
[51]
W. C. Chew, Q. Liu.
Perfectly Matched Layers for elastodynamics: a new absorbing boundary condition, in: J. Comput. Acoust., 1996, vol. 4, no 4, p. 341–359.
[52]
R. Clayton, B. Engquist.
Absorbing boundary conditions for acoustic and elastic wave equations, in: Bull. Seismol. Soc. Am., 1977, vol. 67, p. 1529-1540.
[53]
F. Collino, C. Tsogka.
Application of the PML absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media, in: Geophysics, 2001, vol. 66, no 1, p. 294-307.
[54]
D. Colton, R. Kress.
Inverse acoustic and electromagnetic scattering theory, Applied Mathematical Sciences, Springer Verlag, 1992, no 93.
[55]
J. Diaz, P. Joly.
Robust high order non-conforming finite element formulation for time domain fluid-structure interaction, in: J. Comput. Acoust., 2005, vol. 13, no 3, p. 403–431.
[56]
B. Engquist, A. Majda.
Absorbing boundary conditions for the numerical simulation of waves, in: Math. Comp., 1977, vol. 31, p. 629-651.
[57]
T. Hagstrom, T. Warburton, D. Givoli.
Radiation boundary conditions for time-dependent waves based on complete plane wave expansions, in press, 2008.
[58]
R. L. Higdon.
Numerical absorbing boundary conditions for the wave equation, in: Math. Comp., 1987, vol. 49, p. 65–90.
[59]
F. Q. Hu.
A Stable Perfectly Matched Layer for Linearized Euler Equations in Unsplit Physical Variables, in: J. Comput. Phys., 2001, vol. 173, no 2, p. 455-480.
[60]
F. Q. Hu.
On absorbing boundary conditions for linearized euler equations by a perfectly matched layer, in: J. Comput. Phys., 1996, vol. 129, p. 201–219.
[61]
D. Komatitsch, R. Martin.
An unsplit convolutional Perfectly Matched Layer improved at grazing incidence for the seismic wave equation, in: Geophysics, 2007, vol. 72, no 5, p. SM155-SM167.
[62]
R. Kress.
Integral equation methods in inverse acoustic and electromagnetic scattering, in: Boundary Integral Formulation for Inverse Analysis, Inghman, Wrobel (editors), Computational Mechanics Publications, Southampton, 1997, p. 67–92.
[63]
R. Kress, W. Rundell.
Inverse obstacle scattering using reduced data, in: SIAM J. Appl. Math., 1999, vol. 59, p. 442–454.
[64]
F. Nataf.
A new approach to perfectly matched layers for the linearized Euler equations, in: J. Comput. Phys., 2006, vol. 214, p. 757–772.
[65]
R. Ochs.
The limited aperture problem of inverse acoustic scattering: Dirichlet boundary conditions, in: SIAM J. Appl. Math., 1987, vol. 47, p. 1320–1341.
[66]
J. Pedersen.
Modular Algorithms for Large-Scale Total Variation Image Deblurring, Masters thesis, Technical University of Denmark, 2005.
[67]
A. Zinn.
On an optimization method for full-and limited aperture problem in inverse acoustic scattering for sound-soft obstacle, in: Inverse Problem, 1989, vol. 5, p. 239–253.

previous
next