Team TANC

Members
Overall Objectives
Scientific Foundations
Application Domains
Software
New Results
Contracts and Grants with Industry
Other Grants and Activities
Dissemination
Bibliography

Bibliography

Major publications by the team in recent years

[1]
A. Basiri, A. Enge, J.-C. Faugère, N. Gürel.
The Arithmetic of Jacobian Groups of Superelliptic Cubics, in: Math. Comp., 2005, vol. 74, p. 389–410
https://hal.inria.fr/inria-00071967.
[2]
A. Enge.
Elliptic Curves and Their Applications to Cryptography — An Introduction, Kluwer Academic Publishers, 1999.
[3]
A. Enge, P. Gaudry.
A general framework for subexponential discrete logarithm algorithms, in: Acta Arith., 2002, vol. CII, no 1, p. 83–103.
[4]
A. Enge, F. Morain.
Comparing Invariants for Class Fields of Imaginary Quadratic Fields, in: Algorithmic Number Theory, C. Fieker, D. R. Kohel (editors), Lecture Notes in Comput. Sci., 5th International Symposium, ANTS-V, Sydney, Australia, July 2002, Proceedings, Springer-Verlag, 2002, vol. 2369, p. 252–266.
[5]
A. Enge, R. Schertz.
Constructing elliptic curves over finite fields using double eta-quotients, in: Journal de Théorie des Nombres de Bordeaux, 2004, vol. 16, p. 555–568
http://www.lix.polytechnique.fr/Labo/Andreas.Enge/vorabdrucke/cm.ps.gz.
[6]
P. Gaudry, N. Gürel.
An extension of Kedlaya's point counting algorithm to superelliptic curves, in: Advances in Cryptology – ASIACRYPT 2001, C. Boyd (editor), Lecture Notes in Comput. Sci., Springer-Verlag, 2001, vol. 2248, p. 480–494.
[7]
P. Gaudry, N. Gürel.
Counting points in medium characteristic using Kedlaya's algorithm, in: Experiment. Math., 2003, vol. 12, no 4, p. 395–402
http://www.expmath.org/expmath/volumes/12/12.html.
[8]
P. Gaudry, É. Schost.
Construction of Secure Random Curves of Genus 2 over Prime Fields, in: Advances in Cryptology – EUROCRYPT 2004, C. Cachin, J. Camenisch (editors), Lecture Notes in Comput. Sci., Springer-Verlag, 2004, vol. 3027, p. 239–256
http://www.lix.polytechnique.fr/Labo/Pierrick.Gaudry/publis/secureg2.ps.gz.
[9]
P. Gaudry, É. Schost.
Modular equations for hyperelliptic curves, in: Math. Comp., 2005, vol. 74, p. 429–454
http://www.lix.polytechnique.fr/Labo/Pierrick.Gaudry/publis/eqmod2.ps.gz.
[10]
F. Morain.
La primalité en temps polynomial [d'après Adleman, Huang; Agrawal, Kayal, Saxena], in: Astérisque, Séminaire Bourbaki. Vol. 2002/2003, 2004, no 294, p. Exp. No. 917, 205–230.

Publications of the year

Articles in refereed journals and book chapters

[11]
R. Bhaskar, J. Herranz, F. Laguillaumie.
Aggregate Designated Verifier Signatures and Application to Secure Routing, in: International Journal of Security and Networks - Special Issue on Cryptography in Networks, To appear, 2006.
[12]
R. Dupont, A. Enge.
Provably Secure Non-Interactive Key Distribution Based on Pairings, in: Discrete Applied Mathematics, 2006, vol. 154, no 2, p. 270–276.
[13]
P. Gaudry, É. Schost, N. M. Thiéry.
Evaluation properties of symmetric polynomials, in: Internat. J. Algebra Comput., 2006, vol. 16, no 3, p. 505–523
http://www.lix.polytechnique.fr/Labo/Pierrick.Gaudry/publis/sym.ps.gz.
[14]
J. Herranz.
Deterministic identity-based signatures for partial aggregation, in: The Computer Journal, 2006, vol. 49, no 3, p. 322–330.
[15]
F. Morain.
Implementing the asymptotically fast version of the elliptic curve primality proving algorithm, in: Math. Comp., To appear, September 2006
http://www.lix.polytechnique.fr/Labo/Francois.Morain.

Publications in Conferences and Workshops

[16]
R. Bhaskar, J. Herranz, F. Laguillaumie.
Efficient Authentication for Reactive Routing Protocols, in: AINA'06 (SNDS'06), IEEE Computer Society, 2006, vol. II, p. 57–61.
[17]
D. Galindo, J. Herranz.
A generic construction for token-controlled public key encryption, in: Financial Cryptography and Data Security, G. D. Crescenzo, A. Rubin (editors), Lecture Notes in Comput. Sci., 10th International Conference, FC 2006 Anguilla, British West Indies, February 27-March 2, Springer Verlag, 2006, vol. 4107, p. 177–190.
[18]
P. Gaudry, T. Houtmann, D. R. Kohel, C. Ritzenthaler, A. Weng.
The 2-adic CM method for genus 2 with application to cryptography, in: Advances in Cryptology – ASIACRYPT 2006, X. Lai, K. Chen (editors), Lecture Notes in Comput. Sci., Springer-Verlag, 2006, vol. 4284, p. 114–129
http://www.lix.polytechnique.fr/~houtmann/.
[19]
P. Gaudry, F. Morain.
Fast algorithms for computing the eigenvalue in the Schoof-Elkies-Atkin algorithm, in: ISSAC '06: Proceedings of the 2006 international symposium on Symbolic and algebraic computation, New York, NY, USA, ACM Press, 2006, p. 109–115
http://hal.inria.fr/inria-00001009.
[20]
J. Herranz, F. Laguillaumie.
Blind Ring Signatures Secure under the Chosen Target CDH Assumption, in: Information Security, ISC 2006, S. K. Katsikas, J. Lopez, M. Backes, S. Gritzalis, B. Preneel (editors), Lecture Notes in Comput. Sci., Springer, 2006, vol. 4176, p. 117–130
http://hal.inria.fr/inria-00072853.
[21]
F. Laguillaumie, B. Libert, J.-J. Quisquater.
Universal Designated Verifier Signatures Without Random Oracles or Non-Black Box Assumptions, in: Fifth Conference on Security and Cryptography for Networks (SCN'06), R. D. Prisco, M. Yung (editors), Lecture Notes in Comput. Sci., Springer Verlag, 2006, vol. 4116, p. 63–77
https://hal.inria.fr/inria-00080396.

Internal Reports

[22]
A. Bostan, F. Morain, B. Salvy, É. Schost.
Fast algorithms for computing isogenies between elliptic curves, HAL-INRIA, INRIA, September 2006
https://hal.inria.fr/inria-00091441.
[23]
A. Enge.
The complexity of class polynomial computation via floating point approximations, HAL-INRIA, INRIA, 2006, no 1040
http://hal.inria.fr/inria-00001040.

Miscellaneous

[24]
A. Enge.
Computing modular polynomials in quasi-linear time, Preprint, 2006
http://www.lix.polytechnique.fr/Labo/Andreas.Enge/vorabdrucke/modcomp.pdf.
[25]
A. Enge, P. Gaudry.
An L(1/3 + $ \varepsilon$ ) algorithm for the discrete logarithm problem in low degree curves, Draft, 2006
http://www.lix.polytechnique.fr/Labo/Andreas.Enge/vorabdrucke/l13.pdf.

References in notes

[26]
A. Basiri, A. Enge, J.-C. Faugère, N. Gürel.
Implementing the Arithmetic of C3, 4 Curves, in: Algorithmic Number Theory — ANTS-VI, Berlin, D. Buell (editor), Lecture Notes in Comput. Sci., Springer-Verlag, 2004, vol. 3076, p. 87–101
http://www.lix.polytechnique.fr/Labo/Andreas.Enge/C34.html.
[27]
D. Bernstein.
Proving primality in essentially quartic expected time, January 2003.
[28]
D. Boneh, C. Gentry, B. Lynn, H. Shacham.
Aggregate and verifiably encrypted signatures from bilinear maps, in: Advances in Cryptology – EUROCRYPT 2003, E. Biham (editor), Lecture Notes in Comput. Sci., Springer-Verlag, 2003, vol. 2656, p. 416–432.
[29]
A. Bostan, P. Gaudry, É. Schost.
Linear recurrences with polynomial coefficients and computation of the Cartier-Manin operator on hyperelliptic curves, in: Finite Fields and Applications, 7th International Conference, Fq7, G. Mullen, A. Poli, H. Stichtenoth (editors), Lecture Notes in Comput. Sci., Springer-Verlag, 2004, vol. 2948, p. 40–58
http://www.lix.polytechnique.fr/Labo/Pierrick.Gaudry/publis/cartierFq7.ps.gz.
[30]
O. Chevassut, P.-A. Fouque, P. Gaudry, D. Pointcheval.
The 'Twist-AUgmented' approach to authenticated key exchange, Preprint, 2004.
[31]
R. Dupont.
Fast evaluation of modular functions using Newton iterations and the AGM, To appear in Math. Comp., 2005
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/preprints/Dupont_FastEvalMod.ps.gz.
[32]
A. Enge, F. Morain.
Comparing Invariants for Class Fields of Imaginary Quadratic Fields, in: Algorithmic Number Theory, C. Fieker, D. R. Kohel (editors), Lecture Notes in Comput. Sci., 5th International Symposium, ANTS-V, Sydney, Australia, July 2002, Proceedings, Springer-Verlag, 2002, vol. 2369, p. 252–266.
[33]
A. Enge, F. Morain.
Fast decomposition of polynomials with known Galois group, in: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, M. Fossorier, T. Høholdt, A. Poli (editors), Lecture Notes in Comput. Sci., 15th International Symposium, AAECC-15, Toulouse, France, May 2003, Proceedings, Springer-Verlag, 2003, vol. 2643, p. 254–264.
[34]
J. Franke, T. Kleinjung, F. Morain, T. Wirth.
Proving the primality of very large numbers with fastECPP, in: Algorithmic Number Theory, D. Buell (editor), Lecture Notes in Comput. Sci., 6th International Symposium, ANTS-VI, Burlington, VT, USA, June 2004, Proceedings, Springer-Verlag, 2004, vol. 3076, p. 194–207.
[35]
P. Gaudry, N. Gürel.
Counting points in medium characteristic using Kedlaya's algorithm, in: Experiment. Math., 2003, vol. 12, no 4, p. 395–402
http://www.expmath.org/expmath/volumes/12/12.html.
[36]
P. Gaudry.
A comparison and a combination of SST and AGM algorithms for counting points of elliptic curves in characteristic 2, in: Advances in Cryptology – ASIACRYPT 2002, Y. Zheng (editor), Lecture Notes in Comput. Sci., Springer–Verlag, 2002, vol. 2501, p. 311–327.
[37]
P. Gaudry, T. Houtmann, D. Kohel, C. Ritzenthaler, A. Weng.
The p-adic method for genus 2, Preprint, 2005
http://arxiv.org/abs/math.NT/0503148.
[38]
P. Gaudry, E. Thomé, N. Thériault, C. Diem.
A double large prime variation for small genus hyperelliptic index calculus, in: Math. Comp., To Appear, 2005
http://www.loria.fr/~gaudry/publis/dbleLP.ps.gz.
[39]
N. Gürel.
Extracting bits from coordinates of a point of an elliptic curve, 2005
http://eprint.iacr.org/.
[40]
F. Laguillaumie, P. Paillier, D. Vergnaud.
Universally Convertible Directed Signatures, in: Advances in Cryptology - Asiacrypt 2005, B. Roy (editor), Lecture Notes in Comput. Sci., Springer, 2005, vol. 3788, p. 682–701.
[41]
F. Laguillaumie, D. Vergnaud.
Short Undeniable Signatures Without Random Oracles: the Missing Link, in: Progress in Cryptology - Proceedings of Indocrypt'05, S. Maitra, C. E. V. Madhavan, R. Venkatesan (editors), Lecture Notes in Comput. Sci., Springer-Verlag, 2005, vol. 3797, p. 283–296.
[42]
H. W. Lenstra, Jr., C. Pomerance.
Primality testing with Gaussian periods, July 2005
http://www.math.dartmouth.edu/~carlp/PDF/complexity072805.pdf.
[43]
A. Lysyanskaya, S. Micali, L. Reyzin, H. Shacham.
Sequential aggregate signatures from trapdoor permutations, in: Advances in Cryptology – EUROCRYPT 2004, C. Cachin, J. Camenisch (editors), Lecture Notes in Comput. Sci., Springer-Verlag, 2004, vol. 3027, p. 74–90.
[44]
F. Morain.
Elliptic curves for primality proving, in: Encyclopedia of cryptography and security, H. C. A. van Tilborg (editor), Springer, 2005.
[45]
F. Morain.
Calcul du nombre de points sur une courbe elliptique dans un corps fini: aspects algorithmiques, in: J. Théor. Nombres Bordeaux, 1995, vol. 7, p. 255–282.

previous
next