Team Magique-3D

Members
Overall Objectives
Scientific Foundations
Software
New Results
Contracts and Grants with Industry
Other Grants and Activities
Dissemination
Bibliography

Bibliography

Publications of the year

Articles in refereed journals and book chapters

[1]
M. Amara, C. Bernardi, V. Girault, F. Hecht.
Formulation fonction-courant et tourbillon du problème de Stokes dans un domaine bidimensionnel multiplement connexe, in: Comptes Rendus de l'Académie des Sciences, 2006, vol. 342, no 8, p. 617-622.
[2]
M. Amara, D. Capatina, D. Trujillo.
ariational approach for the multiscale modeling of a river flow. Part 1: Derivation of hydrodynamical models, in: SIAM Multiscale Modeling and Simulation,, submitted, 2006.
[3]
M. Amara, D. Capatina, D. Trujillo.
Stabilized finite element method for the Navier Stokes equations with non standard boundary conditions, in: Mathematics of Computation, accepted, 2006.
[4]
M. Amara, R. Djellouli, C. Farhat.
Convergence analysis of a discontinuous Galerkin method with plane waves and Lagrange multipliers for the solution of Helmholtz problems, in: SIAM Journal on Numerical Analysis, submitted, 2006.
[5]
H. Barucq, B. Duquet, F. Prat.
True-Amplitude one-way propagation in heterogeneous media, in: J. of Scientific Computing, submitted, 2006.
[6]
H. Barucq, M. Fontes.
Well-posedness and exponential stability of Maxwell-like systems coupled with strongly absorbing layers, in: J. Math. Pures Appl., to appear, 2006.
[7]
H. Barucq, M. Fontes, D. Komatitsch.
Mathematical and numerical analysis of a perfectly matched layer Maxwell system involving pseudodifferential operators, in: J. of Computational Physics, submitted, 2006.
[8]
H. Barucq, M. Madaune-Tort, P. Saint-Macary.
Asymptotic Biot models in porous media, in: Adv. Differ. Equ., 2006, vol. 11, no 1, p. 61-90.
[9]
E. Chaljub, D. Komatitsch, J. P. Vilotte, Y. Capdeville, B. Valette, G. Festa.
Spectral Element Analysis in Seismology, in Advances in Wave Propagation in Heterogeneous Media, in: Advances in Geophysics, R.-S. Wu, V. Maupin (editors), Elsevier, to appear, 2006.
[10]
L. Dubois, K. L. Feigl, D. Komatitsch, T. Àrnadòttir, F. Sigmundsson.
Three-dimensional mechanical models for the June 2000 earthquakes sequence in the South Icelandic Seismic Zone, in: Earth and Planetary Science Letters, submitted, 2006.
[11]
A. Ezziani.
Ondes dans les milieux poroélastiques-Analyse du modèle de Biot, in: ARIMA, 2006, vol. 5, p. 95-109.
[12]
A. Gillman, R. Djellouli, M. Amara.
A Mixed Hybrid Formulation Based on Oscillated Finite Element Polynomials for Solving Helmholtz Problems, in: J. of Computational and Applied Mathematics, to appear, 2006.
[13]
C. Gout, C. L. Guyader.
Segmentation of complex geophysical structures with well data, in: Comp. Geosci, to appear, 2006.
[14]
D. Komatitsch, R. Martin.
An unsplit convolution Perfectly Matched Layer improved at grazing incidence for the three-dimensional differential anisotropic elastic wave equation, in: Geophysics, submitted, 2006.
[15]
S. Krishnan, C. Ji, D. Komatitsch, J. Tromp.
Case Studies of Damage to Tall Steel Moment-Frame Buildings in Southern California during Large San Andreas Earthquakes, in: Bulletin of the Seismological Society of America,, 2006, vol. 96(4A), p. 1523-1537.
[16]
S. Krishnan, C. Ji, D. Komatitsch, J. Tromp.
Performance of two 18-story steel moment-frame buildings in Southern California during two large simulated San Andreas earthquakes, in: Earthquake Spectra, to appear, 2006.
[17]
R. Martin, C. Ortiz-Aleman.
Three-dimensional modelling for capacitance tomography using secondary potential formulation, in: Computer Science and Engineering, submitted, 2006.
[18]
R. Martin, R. Zenit.
Heat transfer resulting from the interaction of a vortex pair with a heated wall, in: Journal of Heat Transfer, submitted, 2006.
[19]
A. Rodriguez-Castellanos, F. J. Sanchez-Sesma, F. Luzon, R. Martin.
Multiple scattering of elastic waves by subsurface fractures and cavities, in: Bulletin of the Seismological Society of America, 2006, vol. 96, p. 1359-1374.

Publications in Conferences and Workshops

[20]
M. Amara, A. Bernardini, R. Djellouli.
A new of hybrid-mixed FEM for solving high-frequency wave problems, in: 14 th international conference on finite elements in flow problem, accepted, 2006.

References in notes

[21]
M. Abramovitz, I. Stegun.
Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover Publications, New York, 1972.
[22]
I. Babuska, S. Sauter.
Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers, in: SIAM J. Numer. Anal., 1997, vol. 34, p. 2392-2423.
[23]
J. P. Bérenger.
A Perfectly Matched Layer for the absorption of electromagnetic waves, in: J. Comput. Phys., 1994, vol. 114, p. 185-200.
[24]
F. Brezzi, M. Fortin.
Mixed and hybrid finite element methods, Springer - Verlag, 1991.
[25]
J. M. Carcione.
A 2D Chebyshev differential operator for the elastic wave equation, in: Comput. Methods Appl. Mech. Engrg., 1996, vol. 130, p. 33-45.
[26]
A. Ezziani.
Modélisation mathématique et numérique de la propagation d'ondes dans les milieux viscoélastiques et poroélastiques, Ph. D. Thesis, Université Paris 9, 2005.
[27]
C. Farhat, I. Harari, L. Franca.
The discountinuous discoutinuous enrichment method, in: Comput. Meths. Appl. Mech. Engrg., 2001, vol. 190, p. 6455-6479.
[28]
C. Farhat, I. Harari, U. Hetmaniuk.
A discountinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime, in: Comput. Meths. Appl. Mech. Engrg., 2002, vol. 192, p. 1389-1419.
[29]
C. Flammer.
Spheroidal Functions, Standford University Press, Standford, CA, 1957.
[30]
I. Harari, R. Djellouli.
Analytical study of the effect of wave number on the performance of local absorbing boundary conditions for acoustic scattering, in: Applied Numerical Mathematics, 2004, vol. 50, p. 15-47.
[31]
D. Komatitsch, Q. Liu, J. Tromp, P. Suss, C. Stidham, J. H. Shaw.
Simulations of Ground Motion in the Los Angeles Basin based upon the Spectral-Element Method, in: Bull. Seismol. Soc. Am., 2004, vol. 94, p. 187-206.
[32]
D. Komatitsch, J. Tromp.
Spectral-Element Simulations of Global Seismic Wave Propagation-I. Validation, in: Geophys. J. Int., 2002, vol. 149, p. 390-412.
[33]
D. Komatitsch, J. Tromp.
Spectral-Element Simulations of Global Seismic Wave Propagation-II. 3-D Models, Oceans, Rotation, and Self-Gravitation, in: Geophys. J. Int., 2002, vol. 150, p. 303-318.
[34]
D. Komatitsch, J. Tromp.
Introduction to the spectral-element method for 3-D seismic wave propagation, in: Geophys. J. Int., 1999, vol. 139, p. 806-822.
[35]
D. Komatitsch, J. P. Vilotte.
The spectral-element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures, in: Bull. Seismol. Soc. Am., 1998, vol. 88, no 2, p. 368-392.
[36]
G.A. Kriegsmann, A. Taflove, K. Umashankar.
A new formulation of electromagnetic wave scattering usin an on-surface radiation boundary condition approach, in: IEEE Trans. Antennas Propagation, 1987, vol. 35, no 2, p. 153-161.
[37]
T. Ohminato, B. A. Chouet.
A free-surface boundary condition for including 3D topography in the finite difference method, in: Bull. Seismol. Soc. Am., 1997, vol. 87, p. 494-515.
[38]
K. B. Olsen, R. J. Archuleta.
3-D simulation of earthquakes on the Los Angeles fault system, in: Bull. Seismol. Soc. Am., 1996, vol. 86, no 3, p. 575-596.
[39]
K. B. Olsen, R. Madariaga, R. J. Archuleta.
Three-dimensional dynamic simulation of the 1992 Landers earthquake, in: Science, 1997, vol. 278, p. 834-838.
[40]
K. B. Olsen.
Site amplification in the Los Angeles basin from three-dimensional modeling of ground motion, in: Bull. Seismol. Soc. Am., 2000, vol. 90, p. S77-S94.
[41]
A. T. Patera.
A spectral element method for fluid dynamics: laminar flow in a channel expansion, in: J. Comput. Phys., 1984, vol. 54, p. 468-488.
[42]
R. Reiner, R. Djellouli, I. Harari.
The performance of local absorbing boundary conditions for acoustic scattering from elliptical shapes, in: Methods Appl. Mech. Engrg,, 2006, vol. 195, p. 3622-3665,.
[43]
B. Rulf.
Rayleigh waves on curved surfaces, in: J. Acoust. Soc. Am., 1969, vol. 45, p. 493-499.
[44]
J. Virieux.
P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method, in: Geophysics, 1986, vol. 51, p. 889-901.
[45]
D. J. Wald, R. W. Graves.
The seismic response of the Los Angeles basin, California, in: Bull. Seismol. Soc. Am., 1998, vol. 88, p. 337-356.
[46]
C. Y. Wang, R. B. Herrmann.
A numerical study of P , SV and SH wave generation in a plane layered medium, in: Bull. Seismol. Soc. Am., 1980, vol. 70, p. 1015-1036.

previous
next