Bibliography
Publications of the year
Articles in refereed journals and book chapters
- [1]
- M. Amara, C. Bernardi, V. Girault, F. Hecht.
Formulation fonction-courant et tourbillon du problème de Stokes dans un domaine bidimensionnel multiplement connexe, in: Comptes Rendus de l'Académie des Sciences, 2006, vol. 342, no 8, p. 617-622. - [2]
- M. Amara, D. Capatina, D. Trujillo.
ariational approach for the multiscale modeling of a river flow. Part 1: Derivation of hydrodynamical models, in: SIAM Multiscale Modeling and Simulation,, submitted, 2006. - [3]
- M. Amara, D. Capatina, D. Trujillo.
Stabilized finite element method for the Navier Stokes equations with non standard boundary conditions, in: Mathematics of Computation, accepted, 2006. - [4]
- M. Amara, R. Djellouli, C. Farhat.
Convergence analysis of a discontinuous Galerkin method with plane waves and Lagrange multipliers for the solution of Helmholtz problems, in: SIAM Journal on Numerical Analysis, submitted, 2006. - [5]
- H. Barucq, B. Duquet, F. Prat.
True-Amplitude one-way propagation in heterogeneous media, in: J. of Scientific Computing, submitted, 2006. - [6]
- H. Barucq, M. Fontes.
Well-posedness and exponential stability of Maxwell-like systems coupled with strongly absorbing layers, in: J. Math. Pures Appl., to appear, 2006. - [7]
- H. Barucq, M. Fontes, D. Komatitsch.
Mathematical and numerical analysis of a perfectly matched layer Maxwell system involving pseudodifferential operators, in: J. of Computational Physics, submitted, 2006. - [8]
- H. Barucq, M. Madaune-Tort, P. Saint-Macary.
Asymptotic Biot models in porous media, in: Adv. Differ. Equ., 2006, vol. 11, no 1, p. 61-90. - [9]
- E. Chaljub, D. Komatitsch, J. P. Vilotte, Y. Capdeville, B. Valette, G. Festa.
Spectral Element Analysis in Seismology, in Advances in Wave Propagation in Heterogeneous Media, in: Advances in Geophysics, R.-S. Wu, V. Maupin (editors), Elsevier, to appear, 2006. - [10]
- L. Dubois, K. L. Feigl, D. Komatitsch, T. Àrnadòttir, F. Sigmundsson.
Three-dimensional mechanical models for the June 2000 earthquakes sequence in the South Icelandic Seismic Zone, in: Earth and Planetary Science Letters, submitted, 2006. - [11]
- A. Ezziani.
Ondes dans les milieux poroélastiques-Analyse du modèle de Biot, in: ARIMA, 2006, vol. 5, p. 95-109. - [12]
- A. Gillman, R. Djellouli, M. Amara.
A Mixed Hybrid Formulation Based on Oscillated Finite Element Polynomials for Solving Helmholtz Problems, in: J. of Computational and Applied Mathematics, to appear, 2006. - [13]
- C. Gout, C. L. Guyader.
Segmentation of complex geophysical structures with well data, in: Comp. Geosci, to appear, 2006. - [14]
- D. Komatitsch, R. Martin.
An unsplit convolution Perfectly Matched Layer improved at grazing incidence for the three-dimensional differential anisotropic elastic wave equation, in: Geophysics, submitted, 2006. - [15]
- S. Krishnan, C. Ji, D. Komatitsch, J. Tromp.
Case Studies of Damage to Tall Steel Moment-Frame Buildings in Southern California during Large San Andreas Earthquakes, in: Bulletin of the Seismological Society of America,, 2006, vol. 96(4A), p. 1523-1537. - [16]
- S. Krishnan, C. Ji, D. Komatitsch, J. Tromp.
Performance of two 18-story steel moment-frame buildings in Southern California during two large simulated San Andreas earthquakes, in: Earthquake Spectra, to appear, 2006. - [17]
- R. Martin, C. Ortiz-Aleman.
Three-dimensional modelling for capacitance tomography using secondary potential formulation, in: Computer Science and Engineering, submitted, 2006. - [18]
- R. Martin, R. Zenit.
Heat transfer resulting from the interaction of a vortex pair with a heated wall, in: Journal of Heat Transfer, submitted, 2006. - [19]
- A. Rodriguez-Castellanos, F. J. Sanchez-Sesma, F. Luzon, R. Martin.
Multiple scattering of elastic waves by subsurface fractures and cavities, in: Bulletin of the Seismological Society of America, 2006, vol. 96, p. 1359-1374.
Publications in Conferences and Workshops
- [20]
- M. Amara, A. Bernardini, R. Djellouli.
A new of hybrid-mixed FEM for solving high-frequency wave problems, in: 14 th international conference on finite elements in flow problem, accepted, 2006.
References in notes
- [21]
- M. Abramovitz, I. Stegun.
Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover Publications, New York, 1972. - [22]
- I. Babuska, S. Sauter.
Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers, in: SIAM J. Numer. Anal., 1997, vol. 34, p. 2392-2423. - [23]
- J. P. Bérenger.
A Perfectly Matched Layer for the absorption of electromagnetic waves, in: J. Comput. Phys., 1994, vol. 114, p. 185-200. - [24]
- F. Brezzi, M. Fortin.
Mixed and hybrid finite element methods, Springer - Verlag, 1991. - [25]
- J. M. Carcione.
A 2D Chebyshev differential operator for the elastic wave equation, in: Comput. Methods Appl. Mech. Engrg., 1996, vol. 130, p. 33-45. - [26]
- A. Ezziani.
Modélisation mathématique et numérique de la propagation d'ondes dans les milieux viscoélastiques et poroélastiques, Ph. D. Thesis, Université Paris 9, 2005. - [27]
- C. Farhat, I. Harari, L. Franca.
The discountinuous discoutinuous enrichment method, in: Comput. Meths. Appl. Mech. Engrg., 2001, vol. 190, p. 6455-6479. - [28]
- C. Farhat, I. Harari, U. Hetmaniuk.
A discountinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime, in: Comput. Meths. Appl. Mech. Engrg., 2002, vol. 192, p. 1389-1419. - [29]
- C. Flammer.
Spheroidal Functions, Standford University Press, Standford, CA, 1957. - [30]
- I. Harari, R. Djellouli.
Analytical study of the effect of wave number on the performance of local absorbing boundary conditions for acoustic scattering, in: Applied Numerical Mathematics, 2004, vol. 50, p. 15-47. - [31]
- D. Komatitsch, Q. Liu, J. Tromp, P. Suss, C. Stidham, J. H. Shaw.
Simulations of Ground Motion in the Los Angeles Basin based upon the Spectral-Element Method, in: Bull. Seismol. Soc. Am., 2004, vol. 94, p. 187-206. - [32]
- D. Komatitsch, J. Tromp.
Spectral-Element Simulations of Global Seismic Wave Propagation-I. Validation, in: Geophys. J. Int., 2002, vol. 149, p. 390-412. - [33]
- D. Komatitsch, J. Tromp.
Spectral-Element Simulations of Global Seismic Wave Propagation-II. 3-D Models, Oceans, Rotation, and Self-Gravitation, in: Geophys. J. Int., 2002, vol. 150, p. 303-318. - [34]
- D. Komatitsch, J. Tromp.
Introduction to the spectral-element method for 3-D seismic wave propagation, in: Geophys. J. Int., 1999, vol. 139, p. 806-822. - [35]
- D. Komatitsch, J. P. Vilotte.
The spectral-element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures, in: Bull. Seismol. Soc. Am., 1998, vol. 88, no 2, p. 368-392. - [36]
- G.A. Kriegsmann, A. Taflove, K. Umashankar.
A new formulation of electromagnetic wave scattering usin an on-surface radiation boundary condition approach, in: IEEE Trans. Antennas Propagation, 1987, vol. 35, no 2, p. 153-161. - [37]
- T. Ohminato, B. A. Chouet.
A free-surface boundary condition for including 3D topography in the finite difference method, in: Bull. Seismol. Soc. Am., 1997, vol. 87, p. 494-515. - [38]
- K. B. Olsen, R. J. Archuleta.
3-D simulation of earthquakes on the Los Angeles fault system, in: Bull. Seismol. Soc. Am., 1996, vol. 86, no 3, p. 575-596. - [39]
- K. B. Olsen, R. Madariaga, R. J. Archuleta.
Three-dimensional dynamic simulation of the 1992 Landers earthquake, in: Science, 1997, vol. 278, p. 834-838. - [40]
- K. B. Olsen.
Site amplification in the Los Angeles basin from three-dimensional modeling of ground motion, in: Bull. Seismol. Soc. Am., 2000, vol. 90, p. S77-S94. - [41]
- A. T. Patera.
A spectral element method for fluid dynamics: laminar flow in a channel expansion, in: J. Comput. Phys., 1984, vol. 54, p. 468-488. - [42]
- R. Reiner, R. Djellouli, I. Harari.
The performance of local absorbing boundary conditions for acoustic scattering from elliptical shapes, in: Methods Appl. Mech. Engrg,, 2006, vol. 195, p. 3622-3665,. - [43]
- B. Rulf.
Rayleigh waves on curved surfaces, in: J. Acoust. Soc. Am., 1969, vol. 45, p. 493-499. - [44]
- J. Virieux.
P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method, in: Geophysics, 1986, vol. 51, p. 889-901. - [45]
- D. J. Wald, R. W. Graves.
The seismic response of the Los Angeles basin, California, in: Bull. Seismol. Soc. Am., 1998, vol. 88, p. 337-356. - [46]
- C. Y. Wang, R. B. Herrmann.
A numerical study of P , SV and SH wave generation in a plane layered medium, in: Bull. Seismol. Soc. Am., 1980, vol. 70, p. 1015-1036.