Team galaad

Members
Overall Objectives
Scientific Foundations
Application Domains
Software
New Results
Other Grants and Activities
Dissemination
Bibliography

Bibliography

Major publications by the team in recent years

[1]
L. Busé, M. Elkadi, B. Mourrain.
Resultant over the residual of a complete intersection, in: J. of Pure and Applied Algebra, 2001, vol. 164, p. 35-57.
[2]
L. Busé, M. Elkadi, B. Mourrain.
Using projection operators in computer aided geometric design, in: Topics in algebraic geometry and geometric modeling, Providence, RI, Contemp. Math., Amer. Math. Soc., 2003, vol. 334, p. 321–342.
[3]
M. Elkadi, B. Mourrain.
Algorithms for residues and Lojasiewicz exponents, in: J. of Pure and Applied Algebra, 2000, vol. 153, p. 27-44.
[4]
I. Emiris.
Algorithmes Algébriques et Géométriques, Ph. D. Thesis, Université de Nice Sophia-Antipolis, École Doctorale des Sciences pour l'Ingénieur, January 2000.
[5]
I.Z. Emiris, A. Galligo, H. Lombardi.
Certified Approximate Univariate GCDs, in: J. Pure & Applied Algebra, Special Issue on Algorithms for Algebra, May 1997, vol. 117 & 118, p. 229–251.
[6]
I.Z. Emiris, B. Mourrain.
Matrices in Elimination Theory, in: J. Symbolic Computation, Special Issue on Elimination, 1999, vol. 28, p. 3–44.
[7]
A. Galligo.
Théorème de division et stabilité en géométrie analytique locale, in: Ann. Inst. Fourier, 1979, vol. 29, p. 107–184.
[8]
A. Galligo, S. Watt.
A Numerical Absolute Primality Test for Bivariate Polynomials, in: Proc. Annual ACM Intern. Symp. on Symbolic and Algebraic Computation, 1997, p. 217–224.
[9]
B. Mourrain.
Algorithmes et Applications en Géométrie Algébrique, Ph. D. Thesis, Université de Nice Sophia-Antipolis, September 1997.
[10]
B. Mourrain, V. Y. Pan.
Multivariate Polynomials, Duality and Structured Matrices, in: J. of Complexity, 2000, vol. 16, no 1, p. 110-180.

Publications of the year

Books and Monographs

[11]
M. Elkadi, B. Mourrain, R. Piene (editors)
Algebraic Geometry and Geometric Modeling, Mathematics of Visualisation, Springer, 2006.

Articles in refereed journals and book chapters

[12]
J. Boissonnat, D. Cohen-Steiner, B. Mourrain, G. Rote, G. Vegter.
Meshing of Surfaces, Mathematics and Visualisation, Springer-Verlag, 2006, p. 459–478.
[13]
G. Chèze, A. Galligo.
From an approximate to an exact absolute polynomial factorization, in: J. Symbolic Comput., 2006, vol. 41, no 6, p. 682–696.
[14]
B. Mourrain.
, An introduction to algebraic methods for solving polynomial equationsB. Hanzon, M. Hazewinkel (editors), KNAW Press., 2006, p. 49-94.
[15]
B. Mourrain, N. Pavlidis, D. Tasoulis, M. Vrahatis.
Determining the Number of Real Roots of Polynomials through Neural Networks, in: Computers and Mathematics with Applications, 2006, vol. 39, p. 527–536.
[16]
B. Mourrain, S. Pion, S. Schmitt, J. Técourt, E. Tsigaridas, N. Wolpert.
Algebraic Issues in Computational Geometry, Mathematics and Visualisation, Springer-Verlag, 2006, p. 459–478.

Publications in Conferences and Workshops

[17]
M. Elkadi, A. Galligo, T.-H. .
A sampling algorithm for computing self-intersections of parametric surfaces, in: On parametric surfaces of low degree in the projective spaces, M. Elkadi, B. Mourrain, R. Piene (editors), Mathematics and Visualization, 2006, p. 151-168.
[18]
A. Galligo, J. Pavone.
A sampling algorithm computing self-intersections of parametric surfaces, in: Algebraic Geometry and Geometric Modeling, M. Elkadi, B. Mourrain, R. Piene (editors), Mathematics and Visualization, 2006, p. 185-204.
[19]
J. Wintz, B. Mourrain.
Subdivision method for computing an arrangement of implicit planar curves, in: Algebraic Geometry and Geometric Modeling, 2006.
[20]
J. Wintz, P. Schreck, P. Mathis.
A framework for geometric constraint satisfaction problem, in: SAC '06: Proceedings of the 2006 ACM symposium on Applied computing, New York, NY, USA, ACM Press, 2006, p. 974–978.
[21]
J. Wintz, P. Schreck.
Compilation de systèmes à bases de connaissances pour la résolution symbolique de contraintes géométriques, in: AFIG, 2006.

Internal Reports

[22]
L. Busé.
Elimination theory in codimension one and applications, Research Report, INRIA, 2006, no 5918
http://hal.inria.fr/inria-00077120/en/.
[23]
L. Busé, B. Mourrain.
Explicit factors of some iterated resultants and discriminants, Technical Report, INRIA Sophia-Antipolis, 2006, no hal.inria.fr/inria-00119287
https://hal.inria.fr/inria-00119287.
[24]
I. Z. Emiris, B. Mourrain, E. P. Tsigaridas.
Real Algebraic Numbers: Complexity Analysis and Experimentations, Research Report, INRIA, Avril 2006, no 5897
http://hal.inria.fr/inria-00071370.

References in notes

[25]
H. Brönnimann, I. Emiris, V. Pan, S. Pion.
Sign Determination in Residue Number Systems, in: Theoretical Computer Science, Special Issue on Real Numbers and Computers, 1999, vol. 210, no 1, p. 173-197
ftp://ftp-sop.inria.fr/galaad/emiris/publis/BEPPsignTCS.ps.gz.
[26]
L. Busé, M. Elkadi, B. Mourrain.
Resultant over the residual of a complete intersection, in: Journal of Pure and Applied Algebra, 2001, vol. 164 (1-2), p. 35-57.
[27]
L. Busé.
Computing resultant matrices with Macaulay2 and Maple, Technical Report, INRIA Sophia-Antipolis, 2003, no 0280
http://hal.inria.fr/inria-00069898.
[28]
J.F. Canny, I.Z. Emiris.
A Subdivision-Based Algorithm for the Sparse Resultant, in: J. ACM, May 2000, vol. 47, no 3, p. 417–451
ftp://ftp-sop.inria.fr/galaad/emiris/publis/CEjacm.ps.gz.
[29]
J. Canny, P. Pedersen.
An Algorithm for the Newton Resultant, Technical report, Comp. Science Dept., Cornell University, 1993, no 1394.
[30]
O. Devillers, A. Fronville, B. Mourrain, M. Teillaud.
Algebraic methods and arithmetic filtering for exact predicates on circle arcs, in: Comput. Geom. Theory Appl., 2002, vol. 22, p. 119–142.
[31]
M. Elkadi, B. Mourrain.
A new algorithm for the geometric decomposition of a variety, in: Proc. Intern. Symp. on Symbolic and Algebraic Computation, S. Dooley (editor), ACM Press, New-York, 1999, p. 9-16
ftp://ftp-sop.inria.fr/galaad/mourrain/9903-ElMo-issac.ps.gz.
[32]
J. Jouanolou.
Le Formalisme du résultant, in: Adv. in Math., 1991, vol. 90, no 2, p. 117-263.
[33]
F. Macaulay.
Some Formulae in Elimination, in: Proc. London Math. Soc., 1902, vol. 1, no 33, p. 3-27.
[34]
B. Mourrain, V. Y. Pan.
Multivariate Polynomials, Duality and Structured Matrices, in: J. of Complexity, 2000, vol. 16, no 1, p. 110-180
ftp://ftp-sop.inria.fr/galaad/mourrain/0004-MP-jocstruct.ps.gz.
[35]
O. Ruatta.
A Multivariate Weierstrass Iterative Rootfinder, in: Proc. Intern. Symp. on Symbolic and Algebraic Computation, London, Ontario, B. Mourrain (editor), New-York, ACM Press., 2001, p. 276-283.

previous
next