## Section: Overall Objectives

### Overall Objectives

Data Mining (DM) has been identified as one of the ten main challenges of the 21st century (MIT Technological Review, fev. 2001). The goal is to exploit the massive amounts of data produced in scientific labs, industrial plants, banks, hospitals or supermarkets, in order to extract valid, new and useful regularities. In other words, DM resumes the Machine Learning (ML) goal, finding (partial) models for the complex system underlying the data.

DM and ML problems can be set as optimization problems, thus leading to two possible approaches. Note that this alternative has been characterized by H. Simon (1982) as follows.
*In complex real-world situations, optimization becomes approximate optimization since the description of the real-world is radically simplified until reduced to a degree of complication that the decision maker can handle. Satisficing seeks simplification in a somewhat different direction,
retaining more of the detail of the real-world situation, but settling for a satisfactory, rather than approximate-best, decision.*

The first approach is to simplify the learning problem to make it tractable by standard statistical or optimization methods. The alternative approach is to preserve as much as possible the genuine complexity of the goals (yielding ``interesting'' models, accounting for prior knowledge): more flexible optimization approaches are therefore required, such as those offered by Evolutionary Computation.

Symmetrically, optimization techniques are increasingly used in all scientific and technological fields, from optimum design to risk assessment. Evolutionary Computation (EC) techniques, mimicking the Darwinian paradigm of natural evolution, are stochastic population-based dynamical systems that are now widely known for their robustness and flexibility, handling complex search spaces (e.g. mixed, structured, constrained representations) and non-standard optimization goals (e.g. multi-modal, multi-objective, context-sensitive), beyond the reach of standard optimization methods.

The price to pay for such properties of robustness and flexibility is twofold. On one hand, EC is tuned, mostly by trials and errors, using quite a few parameters. On the other hand, EC generates massive amounts of intermediate solutions. It is suggested that the principled exploitation of preliminary runs and intermediate solutions, through Machine Learning and Data Mining techniques, can offer sound ways of adjusting the dynamical system parameters, and finding short cuts in their trajectories.