Team Parsifal

Members
Overall Objectives
Scientific Foundations
Application Domains
Software
New Results
Other Grants and Activities
Dissemination
Bibliography

Bibliography

Major publications by the team in recent years

[1]
J. Despeyroux.
A Higher-order specification of the $ \pi$ -calculus, in: Proc. of the IFIP International Conference on Theoretical Computer Science, IFIP TCS'2000, Sendai, Japan, August 17-19, 2000., August 2000.
[2]
J. Despeyroux, P. Leleu.
Recursion over Objects of Functional Type, in: Special issue of MSCS on "Modalities in Type Theory", August 2001, vol. 11, no 4.
[3]
J. Despeyroux, P. Leleu.
Primitive recursion for higher-order abstract syntax with dependant types, in: Informal proceedings of the FLoC'99 IMLA Workshop on Intuitionistic Modal Logics and Applications, June 1999.
[4]
J. Despeyroux, F. Pfenning, C. Schürmann.
Primitive Recursion for Higher-Order Abstract Syntax, in: Theoretical Computer Science (TCS), September 2001, vol. 266, no 1-2, p. 1–57.
[5]
R. McDowell, D. Miller.
Reasoning with Higher-Order Abstract Syntax in a Logical Framework, in: ACM Transactions on Computational Logic, January 2002, vol. 3, no 1, p. 80-136
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/mcdowell01.pdf.
[6]
R. McDowell, D. Miller.
A Logic for Reasoning with Higher-Order Abstract Syntax, in: Proceedings, Twelfth Annual IEEE Symposium on Logic in Computer Science, Warsaw, Poland, G. Winskel (editor), IEEE Computer Society Press , July 1997, p. 434-445.
[7]
R. McDowell, D. Miller, C. Palamidessi.
Encoding transition systems in sequent calculus, in: Theoretical Computer Science, 2003, vol. 294, no 3, p. 411-437
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/tcs97.pdf.
[8]
D. Miller.
Forum: A Multiple-Conclusion Specification Language, in: Theoretical Computer Science, September 1996, vol. 165, no 1, p. 201–232.
[9]
D. Miller, A. Tiu.
A Proof Theory for Generic Judgments: An extended abstract, in: Proc. 18th IEEE Symposium on Logic in Computer Science (LICS 2003), IEEE, June 2003, p. 118-127
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/lics03.pdf.
[10]
A. Tiu, D. Miller.
A Proof Search Specification of the $ \pi$ -Calculus, in: 3rd Workshop on the Foundations of Global Ubiquitous Computing, ENTCS, September 2004, vol. 138, p. 79-101
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/fguc04workshop.pdf.

Publications of the year

Articles in refereed journals and book chapters

[11]
D. Miller, A. Tiu.
A proof theory for generic judgments, in: ACM Transactions on Computational Logic, October 2005, vol. 6, no 4, p. 749–783
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/tocl-nabla.pdf.

Publications in Conferences and Workshops

[12]
D. Miller, A. Saurin.
A game semantics for proof search: Preliminary results, in: Proceedings of the Mathematical Foundations of Programming Semantics (MFPS), 2005
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/mfps05.pdf.
[13]
E. Pimentel, D. Miller.
On the specification of sequent systems, in: LPAR 2005: 12th International Conference on Logic for Programming, Artificial Intelligence and Reasoning, LNAI, 2005, no 3835, p. 352-366
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/lpar05.pdf.
[14]
A. Tiu, G. Nadathur, D. Miller.
Mixing Finite Success and Finite Failure in an Automated Prover, in: Proceedings of ESHOL'05: Empirically Successful Automated Reasoning in Higher-Order Logics, December 2005, p. 79 - 98.
[15]
A. Ziegler, D. Miller, C. Palamidessi.
A congruence format for name-passing calculi, in: Proceedings of SOS 2005: Structural Operational Semantics, July 2005
http://www.lix.polytechnique.fr/parsifal/ziegler05report.pdf.

Internal Reports

[16]
D. Baelde.
Logique linéaire et algèbre de processus, Technical report, INRIA Futurs, LIX and ENS, 2005
http://www.lix.polytechnique.fr/parsifal/baelde05stage.ps.

References in notes

[17]
J.-M. Andreoli, R. Pareschi.
Linear Objects: Logical Processes with Built-In Inheritance, in: Proceeding of the Seventh International Conference on Logic Programming, Jerusalem, May 1990.
[18]
J. Despeyroux, A. Felty, A. Hirschowitz.
Higher-order abstract syntax in Coq, in: Second International Conference on Typed Lambda Calculi and Applications, April 1995, p. 124–138.
[19]
J. Despeyroux, A. Hirschowitz.
Higher-order abstract syntax with induction in Coq, in: Fifth International Conference on Logic Programming and Automated Reasoning (LPAR), June 1994, p. 159–173.
[20]
J. Despeyroux, P. Leleu.
Metatheoretic Results for a Modal lambda-Calculus, in: Journal of Functional and Logic Programming (JFLP), January 2000, vol. 2000, no 1.
[21]
J. Despeyroux, P. Leleu.
Recursion over Objects of Functional Type, in: Special issue of MSCS on "Modalities in Type Theory", August 2001, vol. 11, no 4.
[22]
J. Despeyroux, P. Leleu.
Primitive recursion for higher-order abstract syntax with dependant types, in: Informal proceedings of the FLoC'99 IMLA Workshop on Intuitionistic Modal Logics and Applications, June 1999.
[23]
J. Despeyroux, F. Pfenning, C. Schürmann.
Primitive Recursion for Higher-Order Abstract Syntax, in: Theoretical Computer Science (TCS), September 2001, vol. 266, no 1-2, p. 1–57.
[24]
F. Fages, P. Ruet, S. Soliman.
Phase semantics and verification of concurrent constraint programs, in: Symposium on Logic in Computer Science, V. Pratt (editor), IEEE, July 1998.
[25]
G. Gentzen.
Investigations into Logical Deductions, in: The Collected Papers of Gerhard Gentzen, Amsterdam, M. E. Szabo (editor), North-Holland Publishing Co., 1969, p. 68-131.
[26]
J.-Y. Girard.
Locus solum, in: Mathematical Structures in Computer Science, June 2001, vol. 11, no 3, p. 301-506.
[27]
J.-Y. Girard.
A Fixpoint Theorem in Linear Logic, An email posting to the mailing list linear@cs.stanford.edu, February 1992.
[28]
M. Gordon.
HOL: A Machine Oriented Formulation of Higher-Order Logic, Technical report, University of Cambridge, July 1985, no 68.
[29]
L. Hallnäs, P. Schroeder-Heister.
A Proof-Theoretic Approach to Logic Programming. II. Programs as definitions, in: Journal of Logic and Computation, October 1991, vol. 1, no 5, p. 635-660.
[30]
J. Hodas, D. Miller.
Logic Programming in a Fragment of Intuitionistic Linear Logic, in: Information and Computation, 1994, vol. 110, no 2, p. 327-365.
[31]
J. S. Hodas, N. Tamura.
lolliCop — A Linear Logic Implementation of a Lean Connection-Method Theorem Prover for First-Order Classical Logic, in: Proceedings of IJCAR: International Joint Conference on Automated Reasoning, R. Goré, A. Leitsch, T. Nipkow (editors), LNCS, 2001, no 2083, p. 670-684.
[32]
M. Hofmann.
Semantical analysis of higher-order abstract syntax, in: 14th Annual Symposium on Logic in Computer Science, IEEE Computer Society Press, 1999, p. 204-213.
[33]
A. Lisitsa.
$ \lambda$ leanTAP: Lean Deduction in $ \lambda$ Prolog, Technical report, University of Liverpool, Department of Computer Science, 2003, no ULCS-03-017.
[34]
R. McDowell.
Reasoning in a Logic with Definitions and Induction, Ph. D. Thesis, University of Pennsylvania, December 1997.
[35]
R. McDowell, D. Miller.
Cut-elimination for a logic with definitions and induction, in: Theoretical Computer Science, 2000, vol. 232, p. 91-119.
[36]
R. McDowell, D. Miller.
Reasoning with Higher-Order Abstract Syntax in a Logical Framework, in: ACM Transactions on Computational Logic, January 2002, vol. 3, no 1, p. 80-136
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/mcdowell01.pdf.
[37]
R. McDowell, D. Miller.
A Logic for Reasoning with Higher-Order Abstract Syntax, in: Proceedings, Twelfth Annual IEEE Symposium on Logic in Computer Science, Warsaw, Poland, G. Winskel (editor), IEEE Computer Society Press , July 1997, p. 434-445.
[38]
R. McDowell, D. Miller, C. Palamidessi.
Encoding transition systems in sequent calculus, in: Theoretical Computer Science, 2003, vol. 294, no 3, p. 411-437
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/tcs97.pdf.
[39]
D. Miller.
Forum: A Multiple-Conclusion Specification Language, in: Theoretical Computer Science, September 1996, vol. 165, no 1, p. 201–232.
[40]
D. Miller, A. Tiu.
A Proof Theory for Generic Judgments: An extended abstract, in: Proc. 18th IEEE Symposium on Logic in Computer Science (LICS 2003), IEEE, June 2003, p. 118-127
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/lics03.pdf.
[41]
A. Momigliano, A. Tiu.
Induction and Co-induction in Sequent Calculus, in: Post-proceedings of TYPES 2003, S. Berardi, M. Coppo, F. Damiani (editors), LNCS, January 2003, no 3085, p. 293 - 308
http://www.lix.polytechnique.fr/Labo/Alwen.Tiu/linc.pdf.
[42]
L. C. Paulson.
Isabelle: The Next 700 Theorem Provers, in: Logic and Computer Science, P. Odifreddi (editor), Academic Press, 1990, p. 361-386.
[43]
C. Schürmann, F. Pfenning.
A Coverage Checking Algorithm for LF, in: Theorem Proving in Higher Order Logics: 16th International Conference, TPHOLs 2003, LNCS, Springer-Verlag, 2003, vol. 2758, p. 120-135.
[44]
C. Schürmann.
Automating the Meta Theory of Deductive Systems, CMU-CS-00-146, Carnegie Mellon University, October 2000.
[45]
A. Tiu, D. Miller.
A Proof Search Specification of the $ \pi$ -Calculus, in: 3rd Workshop on the Foundations of Global Ubiquitous Computing, ENTCS, September 2004, vol. 138, p. 79-101
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/fguc04workshop.pdf.
[46]
A. Tiu.
A Logical Framework for Reasoning about Logical Specifications, Ph. D. Thesis, Pennsylvania State University, May 2004
http://www.lix.polytechnique.fr/Labo/Alwen.Tiu/etd.pdf.
[47]
A. Tiu.
Level 0/1 Prover: A tutorial, Available online., September 2004.
[48]
A. Tiu.
Model Checking for $ \pi$ -Calculus Using Proof Search, in: CONCUR, M. Abadi, L. de Alfaro (editors), Lecture Notes in Computer Science, Springer, 2005, vol. 3653, p. 36-50.

previous
next