Team PARIS

Members
Overall Objectives
View by sections

Application Domains
Contracts and Grants with Industry
Other Grants and Activities
Dissemination
Bibliography
Inria / Raweb 2003
Project: PARIS

Project : paris

Section: Overall Objectives


Operating system and runtime for clusters

Clusters, made up of homogeneous computers interconnected via high performance networks, are now the most widely used general, high-performance computing platforms for scientific computing. While the cluster architecture is attractive with respect to price/performance there still exists a great potential for efficiency improvements at the software level. System software requires improvements to better exploit the cluster hardware resources. Programming environments need to be developed with both the cluster and human programmer efficiency in mind.

We believe that cluster programming is still difficult as clusters suffer from a lack of dedicated operating system providing a single system image (SSI). A single system image provides the illusion of a single powerful and highly available computer to cluster users and programmers rather than the vision of a set of independent computers, each with resources locally managed.

Several attempts to build an SSI have been made at the middleware level as Beowulf [88], PVM [76] or Mpi [84]. However, these environments provide only a partial SSI. Our approach in Paris project-team is to design and implement a full SSI in the operating system. Our objective is to combine ease of use, high performance and high availability. All physical resources (processor, memory, disk) and kernel resources (process, memory pages, data streams, files) need to be visible and accessible from all cluster nodes. Cluster reconfigurations due to a node addition, eviction or failure need to be automatically dealt with by the system transparently to the applications. Our SSI operating system is designed to perform global, dynamic and integrated resource management.

As the execution time of scientific applications may be larger than the cluster mean time between failures, checkpoint/restart facilities need to be provided not only for sequential applications but also for parallel application whatever the communication paradigm they are based on. Even, if backward error recovery (BER) has extensively been studied from the theoretical point of view, it is still challenging to efficiently implement BER protocols transparently to the applications. There are very few implementations of recovery for parallel applications. Our approach is to identify and implement as part of the SSI OS a set of building blocks that can be combined to implement different checkpointing strategies and their optimization for parallel applications whatever inter-process communication (IPC) layer they use.

In addition to our research activity on operating system, we also study the design of runtimes for supporting parallel languages on clusters. A runtime is a software offering services dedicated to the execution of a particular language. Its objective is to tailor the general system mechanisms (memory management, communication, task scheduling, etc.) to achieve the best performance from the target machine and its operating system. The main originality of our approach is to use the concept of distributed shared memory as the basic communication mechanism within the runtime. We are essentially interested in Fortran and its OpenMP extensions [71]. Fortran language is traditionally used in the simulation applications we focus on. Our work is based on the operating system mechanisms studied in the Paris project-team. In particular, the execution of OpenMP programs on a cluster requires a global address space shared by threads deployed on different cluster nodes. We rely on the two distributed shared memory systems we have designed, one at user level implementing weak memory consistency models, and one at operating system level implementing the sequential consistency model.


previous
next