Activity Report 2016

Team CTRL-A

Control techniques for Autonomic, adaptive and Reconfigurable Computing systems

Inria teams are typically groups of researchers working on the definition of a common project, and objectives, with the goal to arrive at the creation of a project-team. Such project-teams may include other partners (universities or research institutions).
Table of contents

1. Members .. 1

2. Overall Objectives .. 2
 2.1. Objective: control support for autonomic computing ... 2
 2.2. Motivation: safe and optimal autonomic management .. 3
 2.2.1. The problem of automating computing systems administration 3
 2.2.2. Our model-based control approach .. 3
 2.2.3. Opportunities between computer science and control theory 3

3. Research Program .. 4
 3.1. Modeling and control techniques for autonomic computing 4
 3.1.1. Continuous control ... 4
 3.1.2. Discrete control ... 4
 3.2. Design and programming for autonomic computing .. 4
 3.2.1. Reactive programming .. 4
 3.2.2. Component-based approach and domain-specific languages 5
 3.3. Infrastructure-level support for autonomic computing .. 5
 3.3.1. Software and adaptive systems ... 5
 3.3.2. Hardware and reconfigurable architectures .. 5
 3.3.3. Applications and autonomic systems ... 6

4. Application Domains ... 6
 4.1. Distributed systems and High-Performance Computing .. 6
 4.2. Reconfigurable architectures in embedded systems .. 6
 4.3. Smart environments and Internet of Things .. 7

5. Highlights of the Year ... 7
 5.1. Outstanding publications ... 7
 5.1.2. Community ... 7
 5.1.3. Invited talk ... 8

6. New Software and Platforms .. 8

7. New Results ... 9
 7.1. Design and programming ... 9
 7.1.1. Component-based approaches ... 9
 7.1.2. Rule-based systems ... 9
 7.2. Infrastructure-level support ... 9
 7.2.1. Autonomic Cloud and Big-Data systems .. 9
 7.2.2. Reconfiguration control in DPR FPGA .. 10
 7.2.3. Autonomic memory management in HPC .. 10
 7.2.4. Control of smart environments .. 11
 7.2.4.1. A service-oriented approach to smart home applications control with reactive programming ... 11
 7.2.4.2. Rule-based specification of smart environments control 11

8. Bilateral Contracts and Grants with Industry .. 11

9. Partnerships and Cooperations ... 11
 9.1. Regional Initiatives ... 11
 9.1.1. Equipe-action HPES ... 12
 9.1.2. Projet Exploratoire CASE ... 12
 9.2. National Initiatives ... 12
 9.2.1. ANR ... 12
 9.2.2. Informal National Partners ... 12
 9.2.3. Informal National Industrial Partners .. 12
 9.3. International Initiatives ... 12
9.3.1. Inria International Labs 12
9.3.2. Inria International Partners 12
9.3.3. Participation in Other International Programs 13

10. Dissemination ... 13
 10.1. Promoting Scientific Activities 13
 10.1.1. Scientific Events Organisation 13
 10.1.2. Scientific Events Selection 13
 10.1.2.1. Chair of Conference Program Committees 13
 10.1.2.2. Member of the Conference Program Committees 13
 10.1.3. Journal 13
 10.1.3.1. Member of the Editorial Boards 13
 10.1.3.2. Reviewer - Reviewing Activities 13
 10.1.4. Invited Talks 14
 10.1.5. Scientific Expertise 14
 10.1.6. Research Administration 14
 10.2. Teaching - Supervision - Juries 14
 10.2.1. Teaching 14
 10.2.2. Supervision 14

11. Bibliography ... 14
Team CTRL-A

Creation of the Team: 2014 January 01

Keywords:

Computer Science and Digital Science:
1.1.2. - Hardware accelerators (GPGPU, FPGA, etc.)
1.1.4. - High performance computing
1.1.6. - Cloud
1.1.9. - Fault tolerant systems
1.1.10. - Reconfigurable architectures
1.3. - Distributed Systems
1.4. - Ubiquitous Systems
1.6. - Green Computing
2.1.8. - Synchronous languages
2.1.10. - Domain-specific languages
2.2. - Compilation
2.5.1. - Software Architecture & Design
2.5.2. - Component-based Design
2.5.4. - Software Maintenance & Evolution
2.6.2. - Middleware
4.9. - Security supervision
4.9.1. - Intrusion detection
4.9.3. - Reaction to attacks
6.4.2. - Stochastic control

Other Research Topics and Application Domains:
4.5. - Energy consumption
4.5.1. - Green computing
4.5.2. - Embedded sensors consumption
5.1. - Factory of the future
6.1.1. - Software engineering
6.1.2. - Software evolution, maintenance
6.4. - Internet of things
6.5. - Information systems
6.6. - Embedded systems
8.1.1. - Energy for smart buildings
8.1.2. - Sensor networks for smart buildings

1. Members

Research Scientist
Eric Rutten [Team leader, Inria, Researcher, HDR]

Faculty Members
2. Overall Objectives

2.1. Objective: control support for autonomic computing

Computing systems are more and more ubiquitous, at scales from tiny embedded systems to large-scale cloud infrastructures. They are more and more adaptive and reconfigurable, for resource management, energy efficiency, or by functionality. Furthermore, these systems are increasingly complex and autonomous: their administration cannot any longer rely on a strong interaction with a human administrator. The correct design and implementation of automated control of the reconfigurations and/or the tuning is recognized as a key issue for the effectiveness of these adaptive systems.

In the last dozen years, the notion of Autonomic Computing has been proposed and supported by industrials like IBM, as a framework for the design of self-adaptive systems. It addresses objectives of self-configuration, w.r.t. deployment issues, self-optimization, w.r.t; resources management, self-healing, w.r.t. robustness and fault-tolerance, and self-protection, w.r.t. security aspects. It relies on a feedback control loop architecture, with: monitors and reconfiguration actions, connected to the API infrastructure of the system under control ; an autonomic management component , transforming flows of monitoring information into adaptation actions, which can be addressed naturally by reactive programming ; a decision mechanism inside the latter manager, which can rely on behavioral models of the managed system.

Our objective is to build methods and tools for the design of safe controllers for autonomic, adaptive, reconfigurable computing systems. To attain this goal, we propose to combine Computer Science and Control Theory, at the levels of systems infrastructures, programming support, and modeling and control techniques. We explore this topic along three main thematic axes: modeling and control theory with discrete time, continuous time and hybrid models (distributed control, event-based control, discrete event systems, supervisory control) ; programming support with reactive (synchronous languages, controller synthesis, higher-order) and component-based approaches (Fractal framework, language-level support of reconfiguration, Event-Condition-Action (ECA) rules) ; infrastructure-level support (operating system, middleware) for monitors/sensors, administration actions/actuators, architectures for controllability, software and hardware reconfiguration mechanisms.

We aim to address applications with reconfiguration control problems from the small scale (facing variability for system on chips (SoCs), reconfigurable architectures, networks on chips (NoCs), etc.) up to the extra large scale (administration, coordination, optimization of data centers and cloud computing, green computing, smart grids, etc.)
We propose to form a team grouping the most active community in France on Control of Computing, with members until now separated by laboratories structure, in order to contribute more efficiently in the local context to the high potential impact on micro- and nanotechnologies in Grenoble, and more widely nationally and internationally in the emerging community on Feedback Computing.

2.2. Motivation: safe and optimal autonomic management

2.2.1. The problem of automating computing systems administration

It lies in the difficulty of manual management in a safe or optimal way, of computing systems which become more and more complex and flexible. There is a deep need for the automation of their management, handled in a closed-loop: the system is monitored by sensors, which enable updating a self-representation of the system, upon which reconfiguration actions are decided, and in turn they are executed, with an effect on the system, that will be measured by sensors. Such dynamically reconfigurable systems, also called adaptive or autonomic computing systems, are characterized by the ability to modify, on-line, their computing structure, in reaction to conditions in their execution environment or platform.

Motivations for dynamic adaptivity are in important questions like: resource management e.g., energy, computation, memory, bandwidth, circuit area, time; quality of service e.g., levels of precision in computing, of urgency of treatment, graceful degradation; dependability and fault tolerance, e.g., controlling migrations in response to loss of a processor. Adaptivity concerns systems ranging from hardware to operating systems to services and applications, and in size from tiny embedded systems to large-scale data-centers, from multi-core processors to the Cloud. Their complexity is growing, in scale (software of hardware), but also in interactions between different aspects of reconfiguration.

The design of the adaptation controllers is largely done in an ad-hoc fashion, involving lots of different approaches, intuitions, and heuristics. There is an important need for well-founded models and techniques for the safe design of these control loops, which can provide designers with a support to master the complexity of designs, and with guarantees w.r.t. the correctness of the designed controllers.

2.2.2. Our model-based control approach

We aim to build general methodologies and tools for the model-based control of reconfigurable computing system, validated in a representative range of reconfigurable systems.

The classical approach in computer science consists of: first programming, and then verifying. We want to explore, in contrast to this, an alternative approach, more effective (easier for the designer) and safer (better guarantees), inspired by control techniques: first model behaviors of the (uncontrolled) system, and its control interfaces, at each component’s level; then specify the adaptation strategy or policy, i.e., control objectives, and possibly check controllability; finally, derive the controller solution: automatically synthesize the controller (for classes of problems where it is possible).

Our general topic is considering computing systems as object of automatic control, which is a newly emerging scientific theme, often considering continuous models. We will be using our complementary backgrounds in reactive systems and synchronous languages, in Control Theory and in experiences in applying various control techniques to computing systems, as well as a general orientation to apply formal methods to real-world systems. We are reversing the classical view of computer science for control systems, and consider, more originally, control techniques for computing systems.

2.2.3. Opportunities between computer science and control theory

This new and emerging combination of computing and control can bring novel contributions both ways: adaptive computing can benefit from control techniques, which provide designers with a broad range of results, and begin to be equipped with efficient tools e.g., connected to the synchronous technology, which is essential for concrete impact on real-world systems. Research in Control Theory can benefit from computing systems, embedded or large scale, as new application domain, where theoretical results can be evaluated and transferred, and from where new interesting and relevant problems can come up.
Risks could be in e.g., the fact that such a new and mixed topic of systems and control techniques does not yet correspond to an identified scientific community, making it difficult to find people involving themselves rather than staying in their respective community of origin. But this is in direct relationship to the originality of the subject, and is compensated by the identification of concrete potentials in our ongoing work. This multidisciplinary work takes much more exploratory time and cooperative discussion than more classical research programs, but it brings all the more original results.

Control for Computing is in its founding phase: the disadvantage is there are no comfortable inherited results and community, the advantages are in the novelty and relevance of founding a new direction.

3. Research Program

3.1. Modeling and control techniques for autonomic computing

3.1.1. Continuous control

Continuous control was used to control computer systems only very recently and in few occasions, despite the promising results that were obtained. This is probably due to many reasons, but the most important seems to be the difficulty by both communities to transform a computer system problem into an automatic control problem. The aim of the team is to explore how to formalize typical autonomic commuting cases into typical control problems. Many new methodological tools will probably be useful for that, e.g., we can cite the hybrid system approach, predictive control or event-based control approach. Computer systems are not usual for the control system community and they often present non-conventional control aspects like saturation control. New methodological tools are required for an efficient use of continuous-time control in computer science.

3.1.2. Discrete control

Discrete control techniques are explored at long-term, to integrate more control in the BZR language, and address more general control issues, wider than BZR’s limitations. Directions are: expressiveness (taking into account in the LTS models value domains of the variables in the program); adaptive control (where the controller itself can dynamically switch between different modes); distributed control (for classes of problems where communicating controllers can be designed); optimal control (w.r.t. weight functions, on states, transitions, and paths, with multicriteria techniques); timed and hybrid control bringing a new dimension for modeling and control, giving solutions where discrete models fail.

3.2. Design and programming for autonomic computing

3.2.1. Reactive programming

Autonomic systems are intrinsically reconfigurable. To describe, specify or design these systems, there is a need to take into account this reconfigurability, within the programming languages used. We propose to consider the reconfigurability of systems from the angle of two properties: the notion of time, as we want to describe the state and behavior of the system before, and after its reconfiguration; the notion of dynamicity of the system, i.e., considering that the system’s possible behaviors throughout execution are not completely known, neither at design-time nor at initial execution state. To describe and design such reactive systems, we propose to use the synchronous paradigm. It has been successfully used, in industry, for the design of embedded systems. It allows the description of behaviors based on a specific model of time (discrete time scale, synchronous parallel composition), providing properties which are important w.r.t. the safety of the described system: reactivity, determinism, preservation of safety properties by parallel composition (with other parts of the system or with its environment). Models and languages for control, proposed in this framework, provide designers, experts of the application domain, with a user-friendly access to highly technical formal methods of DCS, by encapsulating them in the compilation of concrete programming languages, generating concrete executable code. They are based on discrete models, but also support programming of sampled continuous controllers.
3.2.2. Component-based approach and domain-specific languages

For integration of the previous control kernels into wider frameworks of reconfigurable systems, they have to be integrated in a design flow, and connected on the one side with higher-level specification languages (with help of DSLs), and on the other side with the generated code level target execution machines. This calls for the adoption of a component-based approach with necessary features, available typically in Fractal, for explicitly identifying the control interfaces and mechanisms.

Structuring and instrumentation for controllability will involve encapsulation of computations into components, specification of their local control (activation, reconfiguration, suspension, termination), and exporting appropriate interfaces (including behavior abstraction). Modeling the configurations space requires determining the controlled aspects (e.g., heterogenous CPUs loads, fault-tolerance and variability, memory, energy/power consumption, communication/bandwidth, QoS level) and their control points, as well as APIs for monitors and actions. Compilation and execution will integrate this in a complete design flow involving: extraction of a reactive model from components; instrumentation of execution platforms to be controllable; combination with other controllers: general "glue" and wrapper code.

Integration of reactive languages and control techniques in component-based systems brings interesting questions of co-existence w.r.t. other approaches like Event-Condition-Action (ECA) rules, or Complex Event Processing (CPE).

3.3. Infrastructure-level support for autonomic computing

The above general kernel of model-based control techniques can be used in a range of different computing infrastructures, representing complementary targets and abstraction levels, exploring the two axes:

- from hardware, to operating system/virtual machine, to middleware, to applications/service level;
- across different criteria for adaptation: resources and energy, quality of service, dependability.

3.3.1. Software and adaptive systems

Autonomic administration loops at operating systems or middleware level are already very widespread. An open problem remains in design techniques for controllers with predictability and safety, e.g. w.r.t. the reachable states. We want to contribute to the topic of discrete control techniques for these systems, and tackle e.g. problems of coordination of multiple autonomic loops in data-centers, as in the ANR project CtrlGreen. Another target application is the control of clusters in map-reduce applications. The objective is to use continuous time control in order to tune finely the number of required clusters for an application running on a map-reduce server. This will use results of the ANR project MyCloud that enables to simulate clients on a real map-reduce server. On a longer term, we are interested in control problems in administration loops of event-based virtual machines, or in the deployment of massively parallel computation of the Cloud.

3.3.2. Hardware and reconfigurable architectures

Reconfigurable architectures based on Field Programmable Gate Arrays (FPGA) are an active research area, where infrastructures are more and more supportive of reconfiguration, but its correct control remains an important issue. Work has begun in the ANR Famous project on identifying domain-specific control criteria and objectives, monitors and management APIs, and on integrating control techniques in the high-level RecoMARTE environment. On a longer term, we want to work on methods and tools for the programming of multicores architectures, exploiting the reconfigurability potentials and issues (because of variability, loss of cores), e.g. in our cooperation with ST Microelectronics, using a Fractal-based programming framework in the P2012 project, and in cooperation with Inria Lille (Adam), or with the CEA and TIMA on integrating control loops in the architecture for a fine control of the energy and of the required nodes for running a given application task.
3.3.3. Applications and autonomic systems

In autonomic systems, control systems remain a lively source of inspiration, partly because the notion of control loop implementation is known and practiced naturally. On a wider scale, we started a cooperation with Orange Labs on "intelligent" building automation and control for the Smart Grid, through modeling and control of appliances w.r.t. their power consumption modes, at home, building, and city levels. Other partners on these topics are CEA LETI/DACLE and Schneider Electric.

We could explore more systems and applications e.g., Human-Machine Interfaces, or the orchestration of services. They can help design more general solutions, and result in a more complete methodology.

4. Application Domains

4.1. Distributed systems and High-Performance Computing

Distributed systems have grown to levels of scale and complexity where it is difficult to master their administration and resources management, in dynamic ans open environments. One of the growing concerns is that the energy consumption has reached levels where it can not be considered negligible anymore, ecologically or economically. Data centers or high performance computing grids need to be controlled in order to combine minimized power needs with sustained performance and quality of service. As mentioned above, this motivates the automation of their management, and is the major topic of, amongst others, our ANR project Ctrl-Green.

Another challenge in distributed systems is in the fast growing amounts of data to process and store. Currently one of the most common ways of dealing with these challenges is the parallel programming paradigm MapReduce which is slowly becoming the de facto tool for Big Data analytics. While its use is already widespread in the industry, ensuring performance constraints while also minimizing costs provides considerable challenges. Current approaches to ensure performance in cloud systems can be separated into three categories: static, reactive, predictive and hybrid approaches. In the industry, static deployments are the standard and usually tuned based on the application peak demand and are generally over-provisioned. Reactive approaches are usually based on reacting to an input metric such as the current CPU utilisation, request rate, response time by adding and removing servers as necessary. Some public cloud providers offer reactive techniques such as the Amazon Auto Scaler. They provide the basic mechanisms for reactive controllers, but it is up to the user to define the static scaling thresholds which is difficult and not optimal. To deal with this issue, we propose a control theoretical approach, based on techniques that have already proved their usefulness for the control community.

In the domain of parallel systems and High Performance Computing, systems are traditionally less open and more controlled by administrators, but this trend is changing, as they are facing the same challenges in energy consumption, needs for adaptivity in reaction to changing workloads, and security issues in computation outsourcing. Topics of interest for us in this domain concern problem in dynamical management of memory and communications features, which we are exploring in the HPES project of the Labex Persybal-lab (see 9.1).

4.2. Reconfigurable architectures in embedded systems

Dynamically reconfigurable hardware has been identified as a promising solution for the design of energy efficient embedded systems. A common argument in favor of this kind of architecture is the specialization of processing elements, that can be adapted to application functions in order to minimize the delay, the control cost and to improve data locality. Another key benefit is the hardware reuse to minimise the area, and therefore the static power and cost. Further advantages such as hardware updates in long-life products and self-healing capabilities are also often mentioned. In presence of context changes (e.g. environment or application functionality), self-adaptive technique can be applied as a solution to fully benefit from the runtime reconfigurability of a system.
Dynamic Partial Reconfiguration (DPR) of FPGA is another accessible solution to implement and experiment reconfigurable hardware. It has been widely explored and detailed in literature. However, it appears that such solutions are not extensively exploited in practice for two main reasons: i) the design effort is extremely high and strongly depends on the available chip and tool versions; and ii) the simulation process, which is already complex for non-reconfigurable systems, is prohibitively large for reconfigurable architectures. As a result, new adequate methods are required to fully exploit the potential of dynamically reconfigurable and self-adaptive architectures. We are working in this topic, especially on the reconfiguration control aspect, in cooperation with teams specialized in reconfigurable architectures such as the former DaRT team at Inria Lille, and LabSticc in Lorient, as in the recently ended ANR project Famous.

A new ANR project in this application domain, starting end of 2015, is called HPeC, in cooperation with amongst others LabSticc in Lorient and Clermont-Ferrand U., will consider embedded video processing on drones (see 9.2.1).

4.3. Smart environments and Internet of Things

Another application domain for autonomic systems design and control is the Internet of Things, and especially the design of smart environments, at the level of homes, buildings, or cities. These domains are often considered at the level of sensors networks, with a strong emphasis on the acquisition of data in massive scales. The infrastructures are sometimes also equipped with actuators, with a wide range of applications, for example concerning lighting or heating, or access and security aspects. We are interested in closing the control loop in such environments, which is less often studied. In particular, rule-based languages are often used to define the automated systems, and we want to contribute to the safe design of such controllers with guarantees on their behaviors. We are working in this topic in cooperation with teams specialized in infrastructures for smart environments at CEA LETI/DACLE and Orange labs (see 8.1).

5. Highlights of the Year

5.1. Highlights of the Year

5.1.1. Outstanding publications

Results from our work in the ANR project Ctrl Green (see Section 7.2.1) were published in IEEE Transactions on Software Engineering [16].

Our work on Control of Autonomic Parallelism Adaptation on Software Transactional Memory [20] was nominated in the short list for best papers at the International Conference on High Performance Computing & Simulation (HPCS 2016), Innsbruck, Austria, July 2016.

5.1.2. Community

We have been invited to participate to the organization of events, which highlight our active presence in the scientific life in the two domains which we are bridging :

- autonomic computing:
He is PC member of the 2017 edition of these two conferences as well.

He is PC member for the SEfSAS Book 3 (Software Engineering for Self-Adaptive Systems: Assurances) Volume 3 to be published by Springer LNCS as nr. 9640 in 2017.

Gwenaël Delaval is PC member of the International Workshop on Autonomic High Performance Computing (AHPC 2016).

- control:

 He is PC member of the 13th International Workshop on Discrete Event Systems (WODES 2016), Xi’an, China on May 30 - June 1, 2016 (http://wodes2016.diee.unica.it).

 He is on the IFAC Technical Committee 1.3 on Discrete Event and Hybrid Systems, (http://tc.ifac-control.org/1/3/) and on the IEEE Control Systems Society Discrete Event Systems Technical Committee (http://discrete-event-systems.ieeecss.org).

5.1.3. Invited talk

Eric Rutten was invited to give a talk at the 9th Cloud Control Workshop (by invitation only), Stockholm, June 27-29 2016 (http://cloudresearch.org/workshops/9th) and at the séminaire LIP / Avalon, 16 février 2016, ENS Lyon (https://intranet.inria.fr/Actualite/SEMINAIRE-16-02-16-ERIC-RUTTEN-ENS-DE-LYON).

6. New Software and Platforms

6.1. Heptagon BZR

FUNCTIONAL DESCRIPTION

Heptagon is an experimental language for the implementation of embedded real-time reactive systems. It is developed inside the Synchronics large-scale initiative, in collaboration with Inria Rhones-Alpes. It is essentially a subset of Lucid Synchrone, without type inference, type polymorphism and higher-order. It is thus a Lustre-like language extended with hierarchical automata in a form very close to SCADE 6. The intention for making this new language and compiler is to develop new aggressive optimization techniques for sequential C code and compilation methods for generating parallel code for different platforms. This explains much of the simplifications we have made in order to ease the development of compilation techniques.

Heptagon BZR is an extension of Heptagon, equipped with a behavioral contract mechanisms, where assumptions can be described, as well as an "enforce" property part. Its main feature is to include discrete controller synthesis within its compilation. The semantics of contracts is that the property should be enforced by controlling the behaviour of the node equipped with the contract. This property will be enforced by an automatically built controller, which will act on free controllable variables given by the programmer.

- Participants: Adrien Guatto, Marc Pouzet, Cédric Pasteur, Léonard Gerard, Brice Gelineau, Gwenaël Delaval and Eric Rutten
- Contact: Gwenaël Delaval
- http://bzr.inria.fr
7. New Results

7.1. Design and programming

7.1.1. Component-based approaches

Participants: Gwenaël Delaval, Eric Rutten.

Architecting in the context of variability has become a real need in today’s software development. Modern software systems and their architecture must adapt dynamically to events coming from the environment (e.g., workload requested by users, changes in functionality) and the execution platform (e.g., resource availability). Component-based architectures have shown to be very suited for self-adaptation especially with their dynamical reconfiguration capabilities. However, existing solutions for reconfiguration often rely on low level, imperative, and non formal languages. We have defined Ctrl-F, a domain-specific language whose objective is to provide high-level support for describing adaptation behaviors and policies in component-based architectures. It relies on reactive programming for formal verification and control of reconfigurations. We integrate Ctrl-F with the FraSCAti Service Component Architecture middleware platform, and apply it to the Znn.com self-adaptive case study.

We have obtained new results in the application of modular controller synthesis and BZR compilation integrated in Ctrl-F, in order to attack issues in scalability, and reusability. We are also considering integration at the DSL level of expressivity extensions, for which the compilation and controller synthesis is relying on the ReaX tool developed at Inria Rennes, in the Sumo team.

7.1.2. Rule-based systems

Participants: Adja Sylla, Eric Rutten.

We are starting a cooperation with CEA LETI/DACLE on the topic of a high-level language for safe rule-based programming in the LINC platform. The general context is that of the runtime redeployment of distributed applications, for example managing smart buildings. Motivations for redeployment can be diverse: load balancing, energy saving, upgrading, or fault tolerance. Redeployment involves changing the set of components in presence, or migrating them. The basic functionalities enabling to start, stop, migrate, or clone components, and the control managing their safe coordination, will have to be designed in the LINC middleware developed at CEA.

Rule based middlewares such as LINC enable high level programming of distributed adaptive systems behaviours. LINC also provides the systems with transactional guarantees and hence ensures their reliability at runtime. However, the set of rules may contain design errors (e.g. conflicts, violations of constraints) that can bring the system in unsafe safe or undesirables states, despite the guarantees provided by LINC. On the other hand, automata based languages such as Heptagon/BZR enable formal verification and especially synthesis of discrete controllers to deal with design errors. Our work studies these two languages and combines their execution mechanisms, from a technical perspective. A case study taken in the field of building automation is treated to illustrate the proposed approach [18].

The PhD of Adja Sylla at CEA on this topic is co-advised with F. Pacull and M. Louvel.

7.2. Infrastructure-level support

We apply the results of the previous axes of the team’s activity to a range of infrastructures of different natures, but sharing a transversal problem of reconfiguration control design. From this very diversity of validations and experiences, we draw a synthesis of the whole approach, towards a general view of Feedback Control as MAPE-K loop in Autonomic Computing [23], [22].

7.2.1. Autonomic Cloud and Big-Data systems

Participants: Soguy Mak Kare Gueye, Gwenaël Delaval, Eric Rutten.
Complex computing systems are increasingly self-adaptive, with an autonomic computing approach for their administration. Real systems require the co-existence of multiple autonomic management loops, each complex to design. However, their uncoordinated co-existence leads to performance degradation and possibly to inconsistency. There is a need for methodological supports facilitating the coordination of multiple autonomic managers. To tackle this problem, we take a global view and underscore that Autonomic Management Systems (AMS) are intrinsically reactive, as they react to flows of monitoring data by emitting flows of reconfiguration actions. Therefore we propose a new approach for the design of AMSs, based on synchronous programming and discrete controller synthesis techniques. They provide us with high-level languages for modeling the system to manage, as well as means for statically guaranteeing the absence of logical coordination problems. Hence, they suit our main contribution, which is to obtain guarantees at design time about the absence of logical inconsistencies in the taken decisions. We detail our approach, illustrate it by designing an AMS for a realistic multi-tier application, and evaluate its practicality with an implementation [16].

We addressed these problems in the context of follow-ups of the ANR project Ctrl-Green, in cooperation with LIG (N. de Palma) in the framework of the PhD of S. Gueye [17] and the post-doc of N. Berthier.

7.2.2. Reconfiguration control in DPR FPGA
Participants: Soguy Mak Kare Gueye, Eric Rutten.

Dynamically reconfigurable hardware has been identified as a promising solution for the design of energy efficient embedded systems. However, its adoption is limited by the costly design effort including verification and validation, which is even more complex than for non dynamically reconfigurable systems. We worked on this topic in the context of a ensign environment, developed in the framework of the ANR project Famous, in cooperation with LabSticc in Lorient and Inria Lille (DaRT team). We proposed a tool-supported formal method to automatically design a correct-by-construction control of the reconfiguration. By representing system behaviors with automata, we exploit automated algorithms to synthesize controllers that safely enforce reconfiguration strategies formulated as properties to be satisfied by control. We design generic modeling patterns for a class of reconfigurable architectures, taking into account both hardware architecture and applications, as well as relevant control objectives. We validate our approach on two case studies implemented on FPGAs [3].

We are currently valorizing results in more publications [15], and extending the use of control techniques by evaluating the new tool ReaX developed at Inria Rennes (Sumo).

We are starting a new ANR project called HPeC, within which some of these topics will be extended, especially regarding hierarchical and modular control, and logico-numeric aspects.

7.2.3. Autonomic memory management in HPC
Participants: Naweiluo Zhou, Gwenaël Delaval, Bogdan Robu, Eric Rutten.

Parallel programs need to manage the time trade-off between synchronization and computation. A high parallelism may decrease computing time but meanwhile increase synchronization cost among threads. Software Transactional Memory (STM) has emerged as a promising technique, which bypasses locks, to address synchronization issues through transactions. A way to reduce conflicts is by adjusting the parallelism, as a suitable parallelism can maximize program performance. However, there is no universal rule to decide the best parallelism for a program from an offline view. Furthermore, an offline tuning is costly and error-prone. Hence, it becomes necessary to adopt a dynamical tuning-configuration strategy to better manage a STM system. Autonomic control techniques begin to receive attention in computing systems recently. Control technologies offer designers a framework of methods and techniques to build autonomic systems with well-mastered behaviors. The key idea of autonomic control is to implement feedback control loops to design safe, efficient and predictable controllers, which enable monitoring and adjusting controlled systems dynamically while keeping overhead low. We propose to design feedback control loops to automate the choice of parallelism at runtime and diminish program execution time [20], [24], [21]. It is then combined with another objective related to Thread Mapping Control [19].
In the context of the action-team HPES of the Labex Persyval-lab \(^1\) (see 9.1), this work is performed in cooperation with LIG (J.F. Méhaut) in the framework of the PhD of N. Zhou [14].

7.2.4. Control of smart environments

Participants: Adja Sylla, Armando Ochoa, Eric Rutten, Stéphane Mocanu.

7.2.4.1. A service-oriented approach to smart home applications control with reactive programming

The need for adaptability in pervasive computing is growing, driven in part by the increasing number and variety of communication devices. In autonomic applications, however, the control architecture frequently becomes itself a complex system that needs to be adapted. Autonomic applications are often composed of multiple control loops, each addressing a specific aspect, whose execution needs to be coordinated for efficient and correct administration. We therefore propose to investigate the use of reactive control models with events and states to coordinate autonomic loops in service-oriented architectures. In this work, we illustrate our approach by integrating a controller based on discrete controller synthesis in an autonomic pervasive environment. The role of the controller is to influence the service-binding criteria of multiple control loops, while respecting logical constraints. In particular, we consider reconfiguration operations of known and dynamic service sets. This work constituted the M2R internship of Armando Ochoa, and was performed in cooperation with the Adele team at LIG, co-advised by E. Rutten and V. Lestideau, in the framework of the Labex Persyval-lab project CASE.

Another activity in this topic was the M2R internship of Ronak Feizimirkhani, co-advised by S. Mocanu and V. Lestideau. The context is the development of an application for a smart home in which automation devices are connected through a wireless communication protocol, Z-Wave, and controlled by a central controller, USB plug in. This involves methods and tools to design fail-safe controllers for adaptive, reconfigurable computing systems by combining Computer Science and Control Theory techniques. For this purpose, it is necessary to access required information over the network, derive out a simplified model of the physical network, and then link it to the User interface application. According to the information achieved, there will be an estimation of the network diagnostics to find some probable solutions for. The final application is in a user media to do installing, maintaining or even optimizing the network and devices.

7.2.4.2. Rule-based specification of smart environments control

In the context of IoT applications like smart home environments, the rules for programming in the LINC framework are used as a flexible tool to govern the relations between sensors and actuators. Runtime coordination and formal analysis becomes a necessity to avoid side effects mainly when applications are critical. In cooperation with CEA LETI/DACLE, we are working on a case study for safe applications development in IoT and smart home environments.

New results from Section 7.1.2 are applied in case studies regarding smart environments (offices or homes) [18].

8. Bilateral Contracts and Grants with Industry

8.1. Bilateral Grants with Industry

Our cooperation with CEA LETI/LIST DACLE at Grenoble Minatec is bilateral, involving the CEA PhD grant of Adja Sylla, to work with F. Pacull and M. Louvel on high-level programming on top of a rule-based middleware.

9. Partnerships and Cooperations

9.1. Regional Initiatives

The Labex Persyval-lab is a large regional initiative, supported by ANR, where we are contributing through two projects:

\(^1\)https://persyval-lab.org/en/sites/hpes
9.1.1. Equipe-action HPES

This project (2013-17) groups members from Inria, LIG, Gipsa-lab, TIMA and Gipsa-lab, around the topic of High-Performance Computing benefitting from technologies originally developed for Embedded Systems: https://persyval-lab.org/en/sites/hpes. Ctrl-A is directly involved in the co-advising of the PhD of Naweiluo Zhou, with J.F. Méhaut (LIG), on the topic of autonomic management of software transactional memory mechanisms: https://persyval-lab.org/en/research/phd/autonomic-thread-parallelism-and-mapping-control-software-transactional-memory.

9.1.2. Projet Exploratoire CASE

This project (2015-16) grouped members from Inria, LIG, Gipsa-lab and CEA LETI/DACLE and concerned the general topic of Control techniques for Autonomic Smart Environments, with a special emphasis on relating discrete and stochastic control models with middleware platforms applied to smart environments. It enables us to hire two Masters students for 2016.

9.2. National Initiatives

9.2.1. ANR

HPeC is an ANR project on Self-Adaptive, Energy Efficient High Performance Embedded Computing, with a UAV case study. The Coordinator is Lab-STICC / MOCS (Lorient / Brest), and the duration: 42 month from October 2015. Others Partners are: UBO, U. Clermont-Ferrand, InPixal.

In Ctrl-A, it is funding a PhD thesis or a post-doc position, to be hired in Grenoble and co-advised with Lorient. Another PhD based in Brest is co-advised by Stéphane Mocanu.

9.2.2. Informal National Partners

We have contacts with colleagues in France, in addition to the cooperation mentioned before, and with whom we are submitting collaboration projects, co-organizing events and workshops, etc. They feature: Avalon Inria team in Lyon (F. Desprez), LIP6 (J. Malenfant), Scales Inria team in Sophia-Antipolis (L. Henrio), LIRRM in Montpellier (A. Gamatié, K. Godary, D. Simon), IRISA/Inria Rennes (J. Buisson, J.L. Pazat, ...), Telecom Paris-Tech (A. Diaconescu, E. Najm), LAAS (Thierry Monteil), LURPA ENS Cachan (J.M. Faure, J.J. Lesage).

9.2.3. Informal National Industrial Partners

We have ongoing discussions with several industrial actors in our application domains, some of them in the framework of cooperation contracts, other more informal: Eolas/Business decision (G. Dulac), ST Microelectronics (V. Bertin), Schneider Electric (C. El-Kaed, P. Nappey, M. Pitel), Orange labs (J. Pulou, T. Coupaye, G. Privat).

9.3. International Initiatives

9.3.1. Inria International Labs

We participated to the 6th Workshop of the JLESC, with partners Inria, the University of Illinois, Argonne National Laboratory, Barcelona Supercomputing Center, Jülich Supercomputing Centre and RIKEN AICS. We presented the potential of Autonomic Computing, exemplified by our results from Section 7.2.3, and had contacts with collaboration potentials.

9.3.2. Inria International Partners

9.3.2.1. Informal International Partners

We have ongoing relations with international colleagues in the emerging community on our topic of control for computing e.g., in Sweden at Lund (K.E. Arzen, M. Maggio) and Linnaeus Universities (D. Weyns, N. Khakpour), in the Netherlands at CWI/Leiden University (F. Arbab), in China at Heifei University (Xin An), in Italy at University Milano (C. Ghezzi, A. Leva), in the USA at Ann Arbor University (S. Lafortune) and UMass (P. Shenoy, E. Cecchet).
9.3.3. Participation in Other International Programs

10. Dissemination

10.1. Promoting Scientific Activities

10.1.1. Scientific Events Organisation

10.1.1.1. Member of the Organizing Committees

Stéphane Mocanu is OC member of RESSI 2017 national meeting (https://ressi2017.sciencesconf.org/).

10.1.2. Scientific Events Selection

10.1.2.1. Chair of Conference Program Committees

10.1.2.2. Member of the Conference Program Committees

Eric Rutten is PC member of the 13th International Workshop on Discrete Event Systems (WODES 2016), Xi’an, China on May 30 - June 1, 2016 (http://wodes2016.diec.unica.it) ; for the SEfSAS Book 3 (Software Engineering for Self-Adaptive Systems: Assurances) Volume 3 to be published by Springer LNCS. ; for the two major conferences on the topic : the 13th IEEE International Conference on Autonomic Computing (ICAC 2016) Wuerzburg, Germany, July 19-22, 2016 (http://icac2016.uni-wuerzburg.de) and the 4th International Conference on Cloud and Autonomic Computing (ICCAC 2016), Augsburg, Germany on September 12-16, 2016 (http://iccac2016.se.rit.edu), Part of FAS* - Foundation and Applications of Self* Computing Conferences, Collocated with the IEEE Self-Adaptive and Self-Organizing System Conference ; he is PC member of the 2017 edition of these two conferences as well.

10.1.3. Journal

10.1.3.1. Member of the Editorial Boards

10.1.3.2. Reviewer - Reviewing Activities

Stéphane Mocanu is reviewer for the journal of Discrete Events Dynamical Systems.

Eric Rutten is reviewer for the journal of Distributed Computing (Springer) ; the IEEE Transactions on Software Engineering ; the ACM Transactions on Adaptive and Autonomic Systems.
10.1.4. Invited Talks

Eric Rutten was invited to give a talk at the 9th Cloud Control Workshop, Stockholm, June 27-29 2016 (by invitation only) (http://cloudbase.org/workshops/9th) and at the séminaire LIP / Avalon, 16 février 2016, ENS Lyon (https://intranet.inria.fr/actualite/SEMINAIRE-16-02-16-ERIC-RUTTEN-ENS-DE-LYON).

10.1.5. Scientific Expertise

Eric Rutten is remote referee for the ERC advanced grants program.

10.1.6. Research Administration

Eric Rutten is member of the LIg laboratory concil, and in charge of scientific relations between Inria Grenoble Rhône-Alpes and CEA Tech.

10.2. Teaching - Supervision - Juries

10.2.1. Teaching

S. Mocanu teaches at ENSE3 school of INPG : TCP/IP networks, Real-time communications, Smart-grid communications and IEC 61850, Reliability, Embedded and real-time systems. He is Head of the Control Systems Master program at ENSE3.

G. Delaval teaches at levels L2, L3, M1 at UFRIM2AG (Computer Science Dept.) of UGA : Algorithmic, Programming, Compilation. Soguy Gueye gives tutorials in Programming in the same program.

10.2.2. Supervision

- PhDs in progress :
 - Adja Ndeye SYLLA ; Generation of coordination rules from an automaton, in the context of the redeployment of distributed contra; applications ; feb. 2015 ; E. Rutten, F. Pacull and M. Louvel (CEA)
 - Chabha Hireche, Etude et implémentation d’une approche probabiliste de contrôle de mission de drone autonome ; oct 2015 ; S. Mocanu, Catherine Dezan (U. Bretagne Occidentale), and Jean-Philippe Diguet (U. Bretagne Sud)
 - Ahmed Altaher : Mise en oeuvre d’un cadre de sureté de fonctionnement pour les systèmes de contrôle industriel ; application à des systèmes de distribution d’énergie électrique (smart grids) ; april 2013 ; S. Mocanu, and J-M Thiriet (Gipsa-lab)
 - Maelle Kabir-Querrec; Cybersécurité des systèmes de contrôle pour les smart-grids ; nov. 2014 ; S. Mocanu, and J-M Thiriet (Gipsa-lab)
 - Koucham, Détection d’intrusions dans les systèmes de contrôle industriels ; oct 2015 ; S. Mocanu, and J-M Thiriet (Gipsa-lab)

11. Bibliography

Major publications by the team in recent years

Publications of the year

Doctoral Dissertations and Habilitation Theses

Articles in International Peer-Reviewed Journals

Articles in National Peer-Reviewed Journals

International Conferences with Proceedings

Scientific Books (or Scientific Book chapters)

Research Reports
